Треугольник ABC; AB=9; BC=11; BO=7. АО=ОС(медиана делит основание на 2 равные части). Чтобы найти основание, мы продолжаем медиану на 7 см и ставим точку Д(ВО=ОД=7см); соединяем со всеми вершинами и получаем ромб/параллелограм. Параллелограм состоит из 4-её треугольников, попарно одинаковых; /\АВО=/\СОД(АО=ОС, ВО=ОД и вертикальные углы при точке О); ВД=7+7=14см Воспользуемся формулой Герона: S=\/p(p-a)(p-b)(p-c), где p=(a+b+c):2 Треугольник ВСД: P=(11+9+14):2=17см S=\/17*8**6*3= \/17*4*2*3*2*3=12\/17cm^2
Объяснение: S=a*h/2.
1)
S треуг.=32*7/2=112 см².
16*h/2=112.
h=2*112/16=14 см. высота проведенна на сторону ВС.
2)
S ромба=d₁*d₂/2. диагонали ромба х см и 6х см.
х*6х/2=75.
6х²=150.
х²=25.
х=5 см. одна диагональ . Вторая диагональ 5*6=30 см.
3)
S трапеции=(а+в)/2)*h.
((а+19)/2))*8=104.
а+19=26 . после сокращения.
а=26-19=7см верхнее основание.
4)
Опустим высоту из тупого угла в 150° на нижнее основание.
Угол в этом Δ равен 150-90=60°(верхний угол)
Нижний угол 180-90-60=30°.
Катет, лежащий против угла в 30 град , равен половине гипотенузы
h =10/2=5 см.
S трап.=((7+13)/2))*5=10*5=50см²