ответьте письменно на вопросы у вас есть режим дня строго ли вы его соблюдаете что необходимо делать чтобы рационально использовать своё время что вы делаете в свободное время
R²=АВ²=(0+1)²+(-3-0)²=1+9=10 (это мы от икса и игрека точки А отняли икс и игрек точки В).
Уравнение окружности будет (х-0)²+(у+3)²=10 (в скобках - координаты точки А с противоположными знаками),
то есть х²+(у+3)²=10 - искомое уравнение окружности. Если точка М(6;-1) принадлежит окружности, то её координаты удовлетворяют уравнение окружности. Проверим 6²+(-1+3)²=36+4=40≠10, то есть М окружности не принадлежит (её координаты не подчиняются закону, зашифрованному в уравнении, а все точки окружности - подчиняются).
Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Уравнение окружности будет
(х-0)²+(у+3)²=10 (в скобках - координаты точки А с противоположными знаками),
то есть
х²+(у+3)²=10 - искомое уравнение окружности.
Если точка М(6;-1) принадлежит окружности, то её координаты удовлетворяют уравнение окружности. Проверим
6²+(-1+3)²=36+4=40≠10, то есть М окружности не принадлежит (её координаты не подчиняются закону, зашифрованному в уравнении, а все точки окружности - подчиняются).
ответ: х²+(у+3)²=10; не принадлежит.
∠АОВ и ∠COD вертикальные,
∠ВОС и ∠AOD вертикальные.
Проведем:
ОЕ - биссектрису ∠АОВ,
OF - биссектрису ∠СOD,
OK - биссектрису ∠BOC,
OM - биссектрису ∠AOD.
Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Что и требовалось доказать.