1. а Если прямые а и b пересекаются или параллельны, то через них можно провести единственную плоскость (следствия из аксиом); б) Если прямые а и b совпадают, то через них можно провести несколько плоскостей. 2. Прямая НО пересекается с прямыми AD и AK, значит она лежит в плоскости DAK, которая пересекает плоскость DBC по прямой DK, прямая НО пересекает прямую DK , а следовательно и плоскость DBC, в точке Р. 3. Плоскости ADK и ОСК пересекаются по прямой АК; Плоскости BDK и АС К. пересекаются по прямой ОК.
Объяснение:
1. Найдите площадь треугольника, стороны которого равны 3 см, 7
см и 8 см.
По формуле Герона S=√р(р-а)(р-в)(р-с).
Найдем полупериметр р=(3+7+8):2=9
р-а=9-3=6
р-в=9-7=2
р-с=9-8=1
S=√(9*6*2*1)=6√3.
3. Основа равнобедренного треугольника равна 70 см, а боковая
сторона – 37 см. Найдите радиус круга, описанного вокруг
треугольника.
Центр -лежит вточке пересечения серединных перпендикуляров.
R=(авс)/(4S)
S=1/2*АС*ВН, ВН-высота к основанию АС.
Высота в равнобедренном треугольнике является медианой АН=35см.
ΔАВН-прямоугольный . По т. Пифагора ВН=√(37²-35²)=√(1369-1225)=√144=12(см)
S=1/2*70*12=420 (см²).
R=(авс)/(4S), R=(70*37*37)/(4*420)=1369/24=57 1/24 (см)
б) Если прямые а и b совпадают, то через них можно провести несколько плоскостей.
2. Прямая НО пересекается с прямыми AD и AK, значит она лежит в плоскости DAK, которая пересекает плоскость DBC по прямой DK, прямая НО пересекает прямую DK , а следовательно и плоскость DBC, в точке Р.
3. Плоскости ADK и ОСК пересекаются по прямой АК;
Плоскости BDK и АС К. пересекаются по прямой ОК.