Если хорошо посмотреть на правильный (равносторонний ) Δ АВС и точку О (центр сферы. то увидишь правильную пирамиду, у которой боковое ребро - радиус сферы. Высота пирамиды =2 и сторона основания = 6 Надо найти боковое ребро ( оно = R и S = 4πR^2) Смотрим только на пирамиду. Проведена высота ОК. Точка К - это точка пересечения медиан (высот, биссектрис). Медианы в равностороннем треугольнике делятся в отношении 1:2. Ищем медиану по т. Пифагора m^2 = 6^2 - 3^2 = 36 - 9 = 27 m = 3√3 Боковое ребро можно найти из Δ АО К. АО ищем, ОК = 2, АК = 2/3·3√3=2√3/3 = R сферы. Ищем площадь сферы. S = 4π R^2 = 4π(2√3/3)^2=16π/3
Значит в первом треугольнике считаем эти углы: (180-42)/2=69. Во втором треугольнике так же рассуждаем, при основании угол в 69, значит вершина 42. А теперь доказываем, что они подобны: признак подобия по трем углам, это как раз наш случай. Вот и все. ∠А+∠В+∠С=180, так как треугольник равнобедренный ∠В=∠С, а угол ∠А=42,получаем: 42+∠В+∠В=180, ∠В=69 ∠А1+∠В1+∠С1=180, так как треугольник равнобедренный ∠В=∠С=69,подставляем: ∠А1+69+69=180, ∠А1=42 ∠А=∠А1=42, ∠В=∠В1=69 ∠С=∠С1=69, значит треугольники подобны по трем углам.
Надо найти боковое ребро ( оно = R и S = 4πR^2)
Смотрим только на пирамиду. Проведена высота ОК. Точка К - это точка пересечения медиан (высот, биссектрис). Медианы в равностороннем треугольнике делятся в отношении 1:2. Ищем медиану по т. Пифагора
m^2 = 6^2 - 3^2 = 36 - 9 = 27
m = 3√3
Боковое ребро можно найти из Δ АО К. АО ищем, ОК = 2, АК = 2/3·3√3=2√3/3 = R сферы.
Ищем площадь сферы.
S = 4π R^2 = 4π(2√3/3)^2=16π/3
∠А+∠В+∠С=180, так как треугольник равнобедренный ∠В=∠С, а угол ∠А=42,получаем: 42+∠В+∠В=180, ∠В=69
∠А1+∠В1+∠С1=180, так как треугольник равнобедренный ∠В=∠С=69,подставляем: ∠А1+69+69=180, ∠А1=42
∠А=∠А1=42,
∠В=∠В1=69
∠С=∠С1=69, значит треугольники подобны по трем углам.