Биссектриса правильного треугольника является и высотой и медианой этого треугольника.
Центр вписанного треугольника находится в точке пересечении биссектрис. Эта точка является и точкой пересечения медиан.
Медианы этой точкой делятся в отношении 2:1, считая от вершины .
И теперь самое интересное.
Радиус вписанной окружности в правильный треугольник равен 1/3 ее высоты ( медианы, биссектрисы)
Радиус вписанной окружности этого треугольника равен
r=24*3=8 cм
Центр описанной окружности находится в точке пересечения срединных перпендикуляров.
Срединные перпендикуляры - и высоты, и биссектрисы, и медианы.
Радиус описанной вокруг правильного треугольника окружности равен 2/3 ее высоты.
R= 24*3*2=16 cм
Биссектриса правильного треугольника является и высотой и медианой этого треугольника.
Центр вписанного треугольника находится в точке пересечении биссектрис. Эта точка является и точкой пересечения медиан.
Медианы этой точкой делятся в отношении 2:1, считая от вершины .
И теперь самое интересное.
Радиус вписанной окружности в правильный треугольник равен 1/3 ее высоты ( медианы, биссектрисы)
Радиус вписанной окружности этого треугольника равен
r=24*3=8 cм
Центр описанной окружности находится в точке пересечения срединных перпендикуляров.
Срединные перпендикуляры - и высоты, и биссектрисы, и медианы.
Радиус описанной вокруг правильного треугольника окружности равен 2/3 ее высоты.
R= 24*3*2=16 cм
по теореме косинусов a²=b²+c²-2bccosA cosA=(b²+c²-a²)/2bc=804/924=67/77
sin²A=1-cos²A=1440/77²=36*40/77² sinA=4*√40/77
b²=a²+c²-2accosB cosB=(a²+c²-b²)/2ac=164/484=41/121 cosB=cos2*(B/2)
=cos²B/2-sin²B/2=1-2sin²(B/2) sin²B/2=(1-cosB)/2=40/121 sin(B/2)=√40/11
по теореме синусов:
BD/sinA=c/sinα=AD/sin(B/2)
BD/sinC=a/sin(180-α)=DC/sinB/2
берем вторые равенства и складываем sin(180-α)=sinα
(с+a)/sinα=(AD+DC)/sin(B/2)=b/sin(B/2)
sinα=(c+a)*sin(B/2)/b=33*√40/11*21=√40/7
по теореме синусов
с/sinα=BD/sinA
BD=c*sinA/sinα=22*4*√40*7/(77*√40)=8