1)Плоскость параллельна АВ, значит отрезок КМ принадлежащий и плоскости а и плоскости АВС - параллелен АВ. Значит тр-ки АВС и КМС подобны. Из подобия имеем: АВ/КМ=АС/КС или АВ/36=18/12.. Отсюда АВ = 54см. 2) В равнобедренном тр-ке АВС высота ВD1 к основанию АС является и медианой, то есть AD1=AC/2 = 16cм. Тогда высота BD1 по Пифагору равна √(34²-16²) = 30см. В прямоугольном тр-ке ВDD1 гипотенуза DD1 = √(BD1²+BD²)= √(900+400) ≈ 36cм. Синус угла между плоскостями АВС и ADC - это Sin <DD1B = BD/DD1 = 0,56. Значит угол равен 34°
Биссектриса равностороннего треугольника является медианой и высотой. Обозначим сторону треугольника буквой х.
Биссектриса равностороннего треугольника разбивает его на два равных прямоугольных треугольника, гипотенуза треугольника равна х, биссектриса является одним катетом, длина второго катета равна х/2.
2) В равнобедренном тр-ке АВС высота ВD1 к основанию АС является и медианой, то есть AD1=AC/2 = 16cм. Тогда высота BD1 по Пифагору равна √(34²-16²) = 30см. В прямоугольном тр-ке ВDD1 гипотенуза DD1 = √(BD1²+BD²)= √(900+400) ≈ 36cм. Синус угла между плоскостями АВС и ADC - это Sin <DD1B = BD/DD1 = 0,56. Значит угол равен 34°
Биссектриса равностороннего треугольника является медианой и высотой. Обозначим сторону треугольника буквой х.
Биссектриса равностороннего треугольника разбивает его на два равных прямоугольных треугольника, гипотенуза треугольника равна х, биссектриса является одним катетом, длина второго катета равна х/2.
По теореме Пифагора: х² = (x/2)² + (12√3)².
х² = x²/4 + 144 * 3.
х² - x²/4 = 432.
(4х²)/4 - x²/4 = 432.
(3х²)/4 = 432.
3х² = 432 * 4;
3х² = 1728;
х² = 1728/3 = 576.
х = √576 = 24.
ответ: сторона треугольника равна 24.
Объяснение: