Конструкция имеет форму прямой треугольной призмы, стороны основания которой 9 м, 10 м и 17 м. Найдите высот ( в метрах) в этой конструкции, если площадь ее полной поверхности равна 360 м^2
Объяснение:
Призма прямая, значит боковое ребро является высотой призмы .
S(полное)= 2S(осн)+ S(бок)
S(осн) =S(треуг)= √p (p−a) (p−b) (p−c) , ф. Герона ,
S(бок)=Р*h, h- высота ( в метрах) в этой конструкции.
Р=9+10+17=36 , полупериметр Р/2=р=18 .
р-9=9, р-10=8, р-17=1. Тогда S(треуг)= √(18* 9* 8 *1)=9*4=36, 2S(осн)=72.
построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9
Конструкция имеет форму прямой треугольной призмы, стороны основания которой 9 м, 10 м и 17 м. Найдите высот ( в метрах) в этой конструкции, если площадь ее полной поверхности равна 360 м^2
Объяснение:
Призма прямая, значит боковое ребро является высотой призмы .
S(полное)= 2S(осн)+ S(бок)
S(осн) =S(треуг)= √p (p−a) (p−b) (p−c) , ф. Герона ,
S(бок)=Р*h, h- высота ( в метрах) в этой конструкции.
Р=9+10+17=36 , полупериметр Р/2=р=18 .
р-9=9, р-10=8, р-17=1. Тогда S(треуг)= √(18* 9* 8 *1)=9*4=36, 2S(осн)=72.
360=72+36*h , 360-72=36*h ,h= 8 м