підставка для канцелярського приладдя має форму правильного трикутної призми без верхньої основи. периметр бічної грані цієї підставки дорівнює 40 см. знайдіть площу бічної поверхні підставки, якщо сторона її основи дорівнює 10 см
Даны четыре точки - три из них всегда лежат в одной плоскости. Пусть это будут точки А, В и С. Тогда четвертая точка - D - не лежит в этой плоскости.
Рисунок к задаче в приложении. Получили пирамиду. У неё четыре вершины. В каждой вершине пересекаются 3 пары рёбер. Всего пересекающихся пар прямых будет: N = 4*3 = 12 .
Заметим, что в правильной четырехугольной пирамиде основание высоты совпадает с точкой пересечения диагоналей основания (точка О на рисунке). Следовательно, отрезок SO перпендикулярен плоскости ABC. Так как прямая AC лежит в плоскости ABC, то SO⊥AC (угол SOC прямой). Тогда SC можно найти из теоремы Пифагора для прямоугольного треугольника SOC. Нам понадобятся длины катетов SO и OC.
AC - диагональ квадрата ABCD. Значит, AC = AD*√2. OC = AC/2.
Диагональным сечением, очевидно, является треугольник SAC. Его площадь известна из условия. Зная ее и AC, находим SO.
Даны четыре точки - три из них всегда лежат в одной плоскости. Пусть это будут точки А, В и С. Тогда четвертая точка - D - не лежит в этой плоскости.
Рисунок к задаче в приложении. Получили пирамиду. У неё четыре вершины. В каждой вершине пересекаются 3 пары рёбер. Всего пересекающихся пар прямых будет: N = 4*3 = 12 .
Запишем такие пары прямых:
ABxAC, ABxAD, ACxAD - три из вершины А.
BAxBD, BAxBC, BCxDD - три из вершины В.
CAxCB, CBxCD, CAxCD - три из вершины С.
DAxDB, DBxDC, DCxDA - три из вершины D.
А вот прямые AD и BC - не пересекаются.
Чертеж и весь счет во вложении.
Заметим, что в правильной четырехугольной пирамиде основание высоты совпадает с точкой пересечения диагоналей основания (точка О на рисунке). Следовательно, отрезок SO перпендикулярен плоскости ABC. Так как прямая AC лежит в плоскости ABC, то SO⊥AC (угол SOC прямой). Тогда SC можно найти из теоремы Пифагора для прямоугольного треугольника SOC. Нам понадобятся длины катетов SO и OC.
AC - диагональ квадрата ABCD. Значит, AC = AD*√2. OC = AC/2.
Диагональным сечением, очевидно, является треугольник SAC. Его площадь известна из условия. Зная ее и AC, находим SO.
Дальше вычисляем SC.
ответ: 10 см.