Вся "хитрость" в том, что эти отрезки 9 и 12 - перпендикулярны, как биссектрисы внутренних односторонних углов. Сумма внутренних односторонних углов 180 градусов, значит сумма половин - 90, поэтому треугольник, образованный боковой стороной и этими отрезками - прямоугольный.
Ясно, что это "египетский" треугольник со сторонами 9,12,15, и высота его равна 9*12/15 = 36/5; (это - радиус окружности, вписанной в трапецию).
Трапеция равнобедренная и в неё вписана окружность, следовательно, ПОЛУпериметр равен р = 15*2 = 30; радиус окружности равен вычисленной высоте треугольника r = 36/5, и площадь S = p*r = 30*36/5 = 36*6 = 216;
Вершины вписанного квадрата лежат на сторонах правильного треугольника.
Сделаем рисунок и используем его при решении.
Обозначим сторону данного правильного треугольника а Н - середина КМ и и середина АD АН=HD АК=MD Пусть сторона AD квадрата АВСD равна х Тогда АD=х,
а DМ =(а-х):2, DМ противолежит углу 30°, поэтому СМ=2DМ=2(а-х):2= а-х
Найдем сторону а треугольника, в который вписан квадрат, из его площади, равной по условию 9√3 Площадь равностороннего треугольника находят по формуле: S=(а²√3):4 9√3=(а²√3):4 36√3=а²√3 а²=36 а=6
Вся "хитрость" в том, что эти отрезки 9 и 12 - перпендикулярны, как биссектрисы внутренних односторонних углов. Сумма внутренних односторонних углов 180 градусов, значит сумма половин - 90, поэтому треугольник, образованный боковой стороной и этими отрезками - прямоугольный.
Ясно, что это "египетский" треугольник со сторонами 9,12,15, и высота его равна 9*12/15 = 36/5; (это - радиус окружности, вписанной в трапецию).
Трапеция равнобедренная и в неё вписана окружность, следовательно, ПОЛУпериметр равен р = 15*2 = 30; радиус окружности равен вычисленной высоте треугольника r = 36/5, и площадь S = p*r = 30*36/5 = 36*6 = 216;
Вершины вписанного квадрата лежат на сторонах правильного треугольника.
Сделаем рисунок и используем его при решении.
Обозначим сторону данного правильного треугольника а
Н - середина КМ и и середина АD
АН=HD
АК=MD
Пусть сторона AD квадрата АВСD равна х
Тогда АD=х,
а DМ =(а-х):2,
DМ противолежит углу 30°, поэтому
СМ=2DМ=2(а-х):2= а-х
Найдем сторону а треугольника, в который вписан квадрат, из его площади, равной по условию 9√3
Площадь равностороннего треугольника находят по формуле:
S=(а²√3):4
9√3=(а²√3):4
36√3=а²√3
а²=36
а=6
ДМ= (6-х):2
СМ=2 ДМ=(6-х)
СД=СМ·sin 60°=(6-х)·√3):2
СД=АД=х
2х=6√3-х√3
2х+х√3=6√3
х(2+√3)=6√3
х=6√3:(2+√3)
Периметр равен 4 СД
Р=4·6√3:(2+√3)=24 √3:(2+√3)