Напиши уравнение окружности, которая проходит через точку 8 на оси Ox, и через точку 4 на оси Oy, если известно, что центр находится на оси Ox.(x−...)²+y²=...²
Объяснение:
Пусть центр окружности имеет координаты О(х;0) .
Точки принадлежащие окружности имеют координаты (8;0) и (0;4). Их координаты удовлетворяют уравнению окружности:
(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .
(8-х)²+(0-0)²=R² , или 64-16х+х²=R²
(0-х)²+(4-0)²=R² или х²+16=R² . Вычтем из 1 уравнения 2. Получим :
Правильный пятиугольник может быть построен с циркуля и линейки, или вписыванием его в заданную окружность, или построением на основе заданной стороны. Этот процесс описан Евклидом в его «Началах» около 300 года до н. э.
Вот один из методов построения правильного пятиугольника в заданной окружности:
1. Постройте окружность, в которую будет вписан пятиугольник и обозначьте её центр как O.
2. Выберите на окружности точку A, которая будет одной из вершин пятиугольника. Постройте прямую через O и A.
3. Постройте прямую перпендикулярно прямой OA, проходящую через точку O. Обозначьте одно её пересечение с окружностью как точку B.
4. Постройте точку C посередине между O и B.
5. Проведите окружность с центром в C через точку A. Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D.
6. Проведите окружность с центром в A через точку D. Обозначьте её пересечения с оригинальной (зелёной окружностью) как точки E и F.
7. Проведите окружность с центром в E через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку G.
8. Проведите окружность с центром в F через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку H.
9. Постройте правильный пятиугольник AEGHF.
После этого поделите все центральные углы пополам, и получите оставшиеся пять вершин десятиугольника.
Напиши уравнение окружности, которая проходит через точку 8 на оси Ox, и через точку 4 на оси Oy, если известно, что центр находится на оси Ox.(x−...)²+y²=...²
Объяснение:
Пусть центр окружности имеет координаты О(х;0) .
Точки принадлежащие окружности имеют координаты (8;0) и (0;4). Их координаты удовлетворяют уравнению окружности:
(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .
(8-х)²+(0-0)²=R² , или 64-16х+х²=R²
(0-х)²+(4-0)²=R² или х²+16=R² . Вычтем из 1 уравнения 2. Получим :
64-16х-16=0
-16х=-48
х=3. Центр имеет координаты О(3;0).
Найдем R=√( (3-0)²+(0-4)² )=5.
(x− 3)²+y²=5²
Правильный пятиугольник может быть построен с циркуля и линейки, или вписыванием его в заданную окружность, или построением на основе заданной стороны. Этот процесс описан Евклидом в его «Началах» около 300 года до н. э.
Вот один из методов построения правильного пятиугольника в заданной окружности:
1. Постройте окружность, в которую будет вписан пятиугольник и обозначьте её центр как O.
2. Выберите на окружности точку A, которая будет одной из вершин пятиугольника. Постройте прямую через O и A.
3. Постройте прямую перпендикулярно прямой OA, проходящую через точку O. Обозначьте одно её пересечение с окружностью как точку B.
4. Постройте точку C посередине между O и B.
5. Проведите окружность с центром в C через точку A. Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D.
6. Проведите окружность с центром в A через точку D. Обозначьте её пересечения с оригинальной (зелёной окружностью) как точки E и F.
7. Проведите окружность с центром в E через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку G.
8. Проведите окружность с центром в F через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку H.
9. Постройте правильный пятиугольник AEGHF.
После этого поделите все центральные углы пополам, и получите оставшиеся пять вершин десятиугольника.
Объяснение: