task/29635078 Дан параллелограмм ABCD , F – точка пересечения диагоналей , О – произвольная точка пространства. Доказать: 1) (OA) ⃗+(OC) ⃗=(OB) ⃗+ (OD) ⃗ ; 2) (OF) ⃗=1/4((OA) ⃗+(OB) ⃗+(OC) ⃗+(OD) ⃗) .
Решение : Если векторы исходят из одной точки , то вектор суммы исходит из общей начальной точки векторов и является диагональю параллелограмма, сторонами которого являются данные векторы . * * * ( Сумма векторов , правило параллелограмма ) * * *
Рассмотрим только один случай из трех . ABC-треугольник , опустим высоту CH на сторону AB и AF на сторону BC , центр вписанной окружности лежит в точке пересечения биссектрис, положим что DE || AC опустим перпендикуляры OL=r и OG=r на стороны AB и BC соответственно (r-радиус вписанной окружности). Из подобия треугольников ODL и CAH получаем DO/LO = AC/CH = 1/sin(BAC) DO=r/sin(BAC) Но r=S/p = AB*AC*sinA/(AB+AC+BC) значит DO=AB*AC/(AB+AC+BC) = b*c/(a+b+c) Аналогично OE/OG=AC/CF=1/sin(ACB) OE=r/sin(ACB) OE=AC*BC/(AC+BC+AB) = a*b/(a+b+c) Значит DE=DO+OE=b(a+c)/(b+a+c)
Остальные так же, отрезок параллельный AB || c(a+b)/(a+b+c), BC || a(b+c)/(a+b+c)
task/29635078 Дан параллелограмм ABCD , F – точка пересечения диагоналей , О – произвольная точка пространства. Доказать: 1) (OA) ⃗+(OC) ⃗=(OB) ⃗+ (OD) ⃗ ; 2) (OF) ⃗=1/4((OA) ⃗+(OB) ⃗+(OC) ⃗+(OD) ⃗) .
Решение : Если векторы исходят из одной точки , то вектор суммы исходит из общей начальной точки векторов и является диагональю параллелограмма, сторонами которого являются данные векторы . * * * ( Сумма векторов , правило параллелограмма ) * * *
1) (OA) ⃗+ (OC) ⃗ =2*(OF) ⃗ и (OB) ⃗+(OD) ⃗ = 2*(OF) ⃗
значит (OA) ⃗+ (OC) ⃗ = (OB) ⃗+(OD) ⃗
2) (1/4) * [ (OA) ⃗+(OB) ⃗+ (OC) ⃗+(OD) ⃗] =
(1/4) * [ (OA) ⃗+ (OC) ⃗+(OB) ⃗+(OD) ⃗] =
(1/4) * [ 2*(OF) ⃗+2*(OF) ] =
(1/4) * 4*(OF) ⃗ = (OF) ⃗ .
ABC-треугольник , опустим высоту CH на сторону AB и AF на сторону BC , центр вписанной окружности лежит в точке пересечения биссектрис, положим что DE || AC опустим перпендикуляры OL=r и OG=r на стороны AB и BC соответственно (r-радиус вписанной окружности).
Из подобия треугольников ODL и CAH получаем
DO/LO = AC/CH = 1/sin(BAC)
DO=r/sin(BAC)
Но r=S/p = AB*AC*sinA/(AB+AC+BC) значит
DO=AB*AC/(AB+AC+BC) = b*c/(a+b+c)
Аналогично
OE/OG=AC/CF=1/sin(ACB)
OE=r/sin(ACB)
OE=AC*BC/(AC+BC+AB) = a*b/(a+b+c)
Значит DE=DO+OE=b(a+c)/(b+a+c)
Остальные так же, отрезок параллельный AB || c(a+b)/(a+b+c), BC || a(b+c)/(a+b+c)