Парабола с вершиной в начале координат, симметричная относительно оси y, проходит через точку (-3; 3). В каких точках эта парабола пересекает прямую y=-27
По свойству параллельности прямых если одна из пары параллельных прямых параллельна третей прямой то и другая прямя из пары параллельна третей в нашем случае А║В и А║С ⇒В║С Расстояние между прямым В и С будет зависеть от расположения прямой С которая может находиться по разные стороны от прямой А на расстоянии 6дм тогда, при условии что расстояние от А до В равно 4дм, расстояние между В и С можт быть 1) 6-4=2 Дм при условии что В и С лежат по одну сторону от А 2) 6+4=10 Дм при условии что В и С лежат по разные стороны от А
Пусть АС=4х, ВD=6x, тогда отношение AC:BD=4x:6x=2:3
Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника. По теореме Пифагора сторона ромба а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x² а=х√13
Из формул для вычисления площади треугольника АОВ S(Δ AOB)=AO·OB/2 и S(Δ AOB)=AB·OE/2
находим OE AO·OB=AB·OE OE=2x·3x/х√13=6х/√13.
Из треугольника АОЕ по теореме Пифагора AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13 AE=4x/√13
S(Δ AOE)=AE·OE/2
(4x/√13)·(6x/√13)=54 24x²=54·13 x²=9·13/4
S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13= =351 кв. ед
Расстояние между прямым В и С будет зависеть от расположения прямой С которая может находиться по разные стороны от прямой А на расстоянии 6дм тогда, при условии что расстояние от А до В равно 4дм,
расстояние между В и С можт быть
1) 6-4=2 Дм при условии что В и С лежат по одну сторону от А
2) 6+4=10 Дм при условии что В и С лежат по разные стороны от А
Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника.
По теореме Пифагора сторона ромба
а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x²
а=х√13
Из формул для вычисления площади треугольника АОВ
S(Δ AOB)=AO·OB/2
и
S(Δ AOB)=AB·OE/2
находим OE
AO·OB=AB·OE
OE=2x·3x/х√13=6х/√13.
Из треугольника АОЕ по теореме Пифагора
AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13
AE=4x/√13
S(Δ AOE)=AE·OE/2
(4x/√13)·(6x/√13)=54
24x²=54·13
x²=9·13/4
S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13=
=351 кв. ед