ответ:Решение: В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой, и делит его на 2 равные части, одна из которых - треугольник АВМ. Следовательно АМ равно разности периметра треугольника АВМ и половины периметра треугольника АВС, а именно:
АМ=61,8-100/2=61,8-50=11,8 (см). Ведь, сумма сторон АВ и ВМ треугольника АВМ и есть половина периметра треугольника АВС. Остаётся одна - третья сторона АМ. Вот, её и нашли, как разность, описанную выше.
ответ:Решение: В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой, и делит его на 2 равные части, одна из которых - треугольник АВМ. Следовательно АМ равно разности периметра треугольника АВМ и половины периметра треугольника АВС, а именно:
АМ=61,8-100/2=61,8-50=11,8 (см). Ведь, сумма сторон АВ и ВМ треугольника АВМ и есть половина периметра треугольника АВС. Остаётся одна - третья сторона АМ. Вот, её и нашли, как разность, описанную выше.
ответ: Медиана АМ = 11,8 см оцени Объяснение:
1. В системе координат нарисуй треугольник ABC с координатами вершин:
A(−1;−1), B(−4,2;−1), C(−1;−4,2);
2. Нарисуй треугольник A1B1C1, полученный при повороте треугольника ABC вокруг начала координат на 180°.
3. Нарисуй треугольник A2B2C2, полученный в симметрии треугольника A1B1C1 относительно прямой x=0.
Определи координаты:
image
image
image
Каким образом можно было из треуголника ABC сразу получить треугольник A2B2C2?
центральной симметрией относительно начала координат
параллельным переносом на вектор (1;1)
симметрией относительно прямой y=0
симметрией относительно оси Ox
поворотом на 180 градусов вокруг начала координат
Объяснение: