АБСД (нумерация с левого верхенего угла и по часовой) прямоугольник, следовательно точкой пересечения диагонали делятся пополам. Рассмотрим треугольник АБС - прямоугольный, у него известно 2 стороны - АБ и БС, значит можно найти и гипотенузу по т. Пифагора : АС = корень из (36 + 64) = 10,т. к. нас интересует только часть гипотенузы до т. О, следовательно точка О делит пополам, значит отрезок АО = 5. треуголник АОБ - равноб, т. к. АС и БД равны по свойству прямоугольника. Сразу можем найти периметр ( Ртреуг. АОБ = 5*2 + 6 = 16
разделим треуголник АОБ на два равных, дляэтого опустим перпендикуляр ОК из точки О на сторону АБ, ОК будет являтся и высотой, и медианой и биссектрисой (по свойству равноб треуг) Но нас интересует лишь свойство медианы, то есть делит противополож сторону пополам, следовательно АК=КБ= 3)
найдем из т, Пифагора сторону ОК = корень ( 25 - 9) = 4 значит площадь треугольника АОБ = 1/2(6*4) = 12
На рисунке во вложении показан треугольник АВС, разделённый на равные части по стороне АВ и получившаяся при этом разделении трапеция OKMN. ВD - высота треугольника АВС, которая разделена на три равных отрезка ВТ=ТЕ=ЕD обозначим их h, т.е. BD=BT+TE+ED=3h. Площадь треугольника АВС:
Площадь трапеции OKMN:
Площадь трапеции OKMN можно найти если вычесть из площади треугольника АВС площадь треугольника KBM и площадь трапеции AONC, которые вычисляются по формулам
Подставляем найденное значение АС в формулу площади треугольника АВС
Рассмотрим треугольник АБС - прямоугольный, у него известно 2 стороны - АБ и БС, значит можно найти и гипотенузу по т. Пифагора : АС = корень из (36 + 64) = 10,т. к. нас интересует только часть гипотенузы до т. О, следовательно точка О делит пополам, значит отрезок АО = 5.
треуголник АОБ - равноб, т. к. АС и БД равны по свойству прямоугольника.
Сразу можем найти периметр ( Ртреуг. АОБ = 5*2 + 6 = 16
разделим треуголник АОБ на два равных, дляэтого опустим перпендикуляр ОК из точки О на сторону АБ, ОК будет являтся и высотой, и медианой и биссектрисой (по свойству равноб треуг)
Но нас интересует лишь свойство медианы, то есть делит противополож сторону пополам, следовательно АК=КБ= 3)
найдем из т, Пифагора сторону ОК = корень ( 25 - 9) = 4
значит площадь треугольника АОБ = 1/2(6*4) = 12
Площадь треугольника АВС:
Площадь трапеции OKMN:
Площадь трапеции OKMN можно найти если вычесть из площади треугольника АВС площадь треугольника KBM и площадь трапеции AONC, которые вычисляются по формулам
Подставляем найденное значение АС в формулу площади треугольника АВС
ответ: площадь трапеции равна 31