В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
iceheart1618
iceheart1618
30.03.2022 04:43 •  Геометрия

ПАРАЛЛЕЛЕПИПЕД -
Дан параллелепипед ABCDA1B1C1D1


ПАРАЛЛЕЛЕПИПЕД -  Дан параллелепипед ABCDA1B1C1D1

Показать ответ
Ответ:
Dashuleta200
Dashuleta200
05.11.2021 09:02
1
По теореме синусов, отношение стороны треугольника к синусу противолежащего угла равно удвоенному радиусу описанной окружности.
2R = 8√3/sin(60°)
R = 4√3/(√3/2) = 8
2
Верхний рисунок
Теорема косинусов для треугольника 6,10,13
13²=10²+6²-2*10*6*cos(fi)
169=100+36-120*cos(fi)
33=-120*cos(fi)
11=-40*cos(fi)
cos(fi)=-11/40
Теорема косинусов для треугольника 6,10,x
x²=10²+6²-2*10*6*cos(180-fi)
x²=100+36-120*(-cos(fi))
x²=136+120*cos(fi)
x²=136+120*(-11/40) = 136-3*11 = 103
x=√103
--------------------
Казалось, что разное расположение диагоналей даст разные результаты. Но нет, на нижнем рисунке сперва теорема косинусов для треугольника 6,10,13
13²=10²+6²-2*10*6*cos(180-fi)
169=100+36+120*cos(fi)
33=120*cos(fi)
11=40*cos(fi)
cos(fi)=11/40
Теорема косинусов для треугольника 6,10,x
x²=10²+6²-2*10*6*cos(fi)
x²=100+36-120*(cos(fi))
x²=136-120*cos(fi)
x²=136-120*(11/40) = 136-3*11 = 103
x=√103
3
Центр вписанной окружности = точка пересечения биссектрис углов треугольника. Поэтому отрезки 5 и 12 от вершин острых углов до точки касания вписанной окружностью гипотенузы имеют равные им отрезки 5 и 12 до точек касания окружностью катетов.
Т.к. треугольник прямоуголен, то отрезки катетов от вершины прямого угла и два радиуса вписанной окружности образуют квадрат со стороной 3.
И длины катетов составляют
3+5=8 см
3+12=15 см
Тема: теорема синусов, теорема косинусов, описанная окружность, вписанная окружность и т.д 1)одна из
Тема: теорема синусов, теорема косинусов, описанная окружность, вписанная окружность и т.д 1)одна из
0,0(0 оценок)
Ответ:
Fleepee
Fleepee
05.11.2021 09:02
1. В равнобедренной трапеции сумма оснований равна сумме боковых сторон и боковая сторона видна из центра вписанной окружности под углом 90° (свойства). Тогда По теореме Пифагора в треугольнике АВО:
ОВ=9, АО=12, АВ=15. Высота из прямого угла  на гипотенузу АВ - это радиус вписанной окружности и по свойству высоты:
r= ОА*ОВ/АВ = 12*9/15 = 7,2см.
Высота трапеции равна двум радиусам вписанной окружности
h = 2r = 14.4 см. Тогда площадь трапеции:
S=(ВС+АD) * h/2 = (АВ+СD) *h/2 = (15+15) *14,4/2 = 216см².
ответ: 216.
2. Пусть АВСD - данная прямоугольная трапеция c прямым углом А. Опустим высоту СН из тупого угла  С. Тогда сторона CD по Пифагору равна √(6²+8²) = 10см.
В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°. Значит треугольник OCD - прямоугольный.  Тогда по Пифагору CD=√(6²+8²)=10см.
Радиус вписанной окружности - высота ОР  из прямого угла и по ее свойствам равен  r= ОС*ОD/CD=6*8/10=4,8см.
Тогда высота трапеции равна 2*r=9,6см.
В треугольнике НСD катет НD=√(10²-9,6²)=2,8см.
Высота ОР делит гипотенузу СD на отрезки СР и РD, причем
ОС²=СР*CD (свойство). Отсюда СР=36/10=3,6см, а PD=6,4см.
В нашей трапеции  основание ВС=СN+r = 4,8+3,6=8,4см (так как касательные из одной точки С к окружности равны).
Площадь трапеции равна сумме площадей прямоугольника АВСН и треугольника CHD: 8,4*9,6+(1/2)*9,6*2,8 = 80,64+13,44=94,08см².
ответ: S=94,08см².
3. Формула радиуса вписанной в прямоугольный треугольник окружности: r=(a+b-c)/2 = 2. => a+b=14. b=a-14.
По Пифагору: a²+(14-а)²=100  =>  a²-14a+96=0. =>
a1=6, a2=8. Соответственно b1=8, b2=6.
S=(1/2)*6*8=24см².
4. По теореме косинусов для треугольников АОС и ВОС:
R²=16²+8²-2*16*8*Cosα  (1)
R²=12²+8²-2*12*8*Cos(180-α).  Cos(180-α) = -Cosα.
R²=12²+8²+2*12*8*Cosα. (2). Приравняем (1) и (2):
320-256*Cosα=208+192*Cosα => Cosα=0,25.
Из(1):  R²=320-64=256.
ответ: R=16см.
5. Касательные из одной точки к окружности равны, радиусы перпендикулярны касательным в точке касания.
Поэтому прямоугольные треугольники АВО и СВО равны и угол АВО=30°.
Тогда АО=20см и АВ=10√3см.
Периметр Pabco=2*10+2*10√3=20(1+√3)см.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота