Параллельные плоскости а и В пересекают сторону АВ угла ВАС соответственно в точках Р и Н, а сторону АС этого угла - соответственно в точках Q и К. Найдите АН и HK, если
AH=1,5PH, PA=24 см, PQ= 18 см. Выполните рисунок по условию задачи. Правильно или нет
Пусть дана окружность с центром О и в нее вписан треугольник ABC. Соединим центр окружности О с вершинами A и B треугольника, а также опустим высоту ОE на сторону AB с центра окружности. Рассмотрим треугольник OEB, OE перпендикулярна AB, то есть угол OEB – прямой, OB=R (радиусу вписанной окружности) и OE=R/2 (по условию). Тогда по теореме Пифагора (EB)^2=(OB)^2-(OE)^2=R^2-R^2/4=3R^2/4 EB=R*sqrt(3)/2 Рассмотрим треугольник AEO. Он равен треугольнику OEB, поскольку AO=OB=R и OE- общая сторона. Тогда и AE=R*sqrt(3)/2, а значит AB=AE+EB= R*sqrt(3)/2+ R*sqrt(3)/2=R*sqrt(3) Поскольку в равносторонем треугольнике сторона равна R*sqrt(3), то и наше утверждение доказано
Дана трапеция ABCD. Проведем две высоты к большем основанию из точек B и C. Получатся две высоты BK и CH. Рассмотрим треугольник ABK. Угол BKA = 90 градусов ( тк BK перпендикулярен AD ). Тк угол 90 градусов, то треугольник BKA - прямоугольный. Найдем сторону AK. AK = (AD-BC):2=2. Мы знаем, что в прямоугольном треугольнике катет лежащий напротив углы в 30 градусов равен половине гипотенузы, а так как AK=1/2AB, то угол ABK = 30 градусов. Тогда угол A = 180- (30+90)=60 градусов. Найдем угол B. Угол B=90+30=120 градусов. Угол B=C, а угол A=D. Тк. трапеция равнобедренная. ответ угол D=60, A=60, B=120, C=120.