Параллельные плоскости Альфа и Бетта пересекают сторону AB угла BAC соответственно в точках Р и Н,а сторону АС этого угла- соответственно в точках Q и К. Найдите НК и АН, если РQ=18см,АР=24см,АН=1,5РН
Дано: трапеция АВСД, где ВС – меньшее основание. АВ=ВС=СД. Из т.В опустили высоту ВЕ к стороне АД. Точка О – пересечение ВЕ и АС. ВО=10, ОЕ=8.
1) 1) Пусть ВС=х, тогда АВ=х. Из треугольника АВЕ: АЕ^2=AB^2-BE^2=x^2-(10+8)^2=x^2-324
2) 2) Треугольники АОЕ и ВОС подобны по 2-м углам (углы АОЕ и ВОС равны как вертикальные; углы ОАЕ и ОСВ равны как накрест лежащие при 2-х параллельных прямых), тогда АЕ:ВС=ОЕ:ОВ. Отсюда АЕ=ВС*ОЕ/ОВ=х*8/10. Значит АЕ^2=x^2*64/100
3) 3) Подставим уравнение из п.2 в п.1: x^2-324= x^2*64/100. Отсюда х=30
Стороны треугольника равны 6, 25 и 29. Найти радиус окружности, проходящей через середины сторон этого треугольника. Окружность проходит через середины сторон треугольника. Следовательно она является описаной окружностью для треугольника составленного из средних линий (отрезков соединяющих середины сторон треугольника) исходного треугольника Длины средних линий найти просто это половина сторон исходного треугольника . Исходный треугольник 6, 25, 29 Треугольник из средних линий 3; 12,5; 14,5. Радиус описанной окружности определяется по формуле R =a*b*с/(4корень(p(p-a)(p-b)(p-c))). где p=(a+b+с)/2 У нас а=3;b=12,5; c=14,5 p =(3+12,5+14,5)/2=30/2=15 Находим радиус R =3*12,5*14,5/(4*корень(15(15-3)(15-12,5)(15-14,5)))= = 543,75/(4*корень(15*12*2,5*0,5))= 543,75/(4*15)=9,0625
Дано: трапеция АВСД, где ВС – меньшее основание. АВ=ВС=СД. Из т.В опустили высоту ВЕ к стороне АД. Точка О – пересечение ВЕ и АС. ВО=10, ОЕ=8.
1) 1) Пусть ВС=х, тогда АВ=х. Из треугольника АВЕ: АЕ^2=AB^2-BE^2=x^2-(10+8)^2=x^2-324
2) 2) Треугольники АОЕ и ВОС подобны по 2-м углам (углы АОЕ и ВОС равны как вертикальные; углы ОАЕ и ОСВ равны как накрест лежащие при 2-х параллельных прямых), тогда АЕ:ВС=ОЕ:ОВ. Отсюда АЕ=ВС*ОЕ/ОВ=х*8/10. Значит АЕ^2=x^2*64/100
3) 3) Подставим уравнение из п.2 в п.1: x^2-324= x^2*64/100. Отсюда х=30
4) 4) Тогда АЕ^2=30^2-324=576. Отсюда АЕ=24
5) 5) АД=ВС+2*АЕ=30+2*24=78
6) 6) S=1/2*(ВС+АД)*ВЕ=1/2*(30+78)*18=972
Окружность проходит через середины сторон треугольника.
Следовательно она является описаной окружностью для треугольника
составленного из средних линий (отрезков соединяющих середины сторон треугольника) исходного треугольника
Длины средних линий найти просто это половина сторон исходного треугольника
. Исходный треугольник 6, 25, 29
Треугольник из средних линий 3; 12,5; 14,5.
Радиус описанной окружности определяется по формуле
R =a*b*с/(4корень(p(p-a)(p-b)(p-c))).
где p=(a+b+с)/2
У нас а=3;b=12,5; c=14,5
p =(3+12,5+14,5)/2=30/2=15
Находим радиус
R =3*12,5*14,5/(4*корень(15(15-3)(15-12,5)(15-14,5)))=
= 543,75/(4*корень(15*12*2,5*0,5))= 543,75/(4*15)=9,0625