Параллельные плоскости ά и β пересекают сторону АС угла АСВ в точках А1 и А2 , а сторону ВС в точках В1 и В2 соответственно. Найдите длину отрезка А1С, если А1А2 = 8 см, А1В1 = 3см, А2В2 = 15 см.
Найдем углы параллелограмма АВСД исходя из их отношений 1:5 и из того, что одна из диагоналей ВД будет являться высотой. Есть только один вариант найти угол А=С,приняв его за Х, тогда другой угол Д=5Х*=90*-Х*+90*; Откуда 6Х=180*>>Х=30*;Значит угол между высотой ВД и стороной СД равен 60*; В таком случае, приняв за 1 сторону СД,Получим высоту ВД равную 1/2( лежащий против угла 30*), а другую сторону ВС равную \/3/2; Найдем большую диагональ АС, она будет равна (1/2)^2+(\/3/2)^2=\/(1/4+3)=\/13/2; Имеем:диагональ АС=\/13/2; и диагональ ВД=1/2; их отношение будет как \/13:1; ответ:\/13:1
Окружность, вписанная в треугольник АВС с периметром, равным 20 см, делит точкой касания сторону АС на отрезки АК = 5 см, КС = 3 см. Определите, каким является треугольник: остроугольным, тупоугольным или прямоугольным?
Объяснение:
По т. об отрезках касательных АК=АР=5 см, СК=СМ=3 см.
Р=АВ+ВС+АС ,
20=(5+ВР)+(3+ВМ)+(5+3),
4=ВР+ВМ , но ВР=ВМ, тогда ВР=ВМ=2 см.
АВ= 7 см, ВС=5 см, АС=8 см .
Проверим условие а²+в² ....?....c²
7²+5²=49+25=74
8²=64 , 74>64 значит ΔАВС-остроугольный т.к. " Если квадрат наибольшей стороны меньше суммы квадратов двух других сторон:
Найдем углы параллелограмма АВСД исходя из их отношений 1:5 и из того, что одна из диагоналей ВД будет являться высотой. Есть только один вариант найти угол А=С,приняв его за Х, тогда другой угол Д=5Х*=90*-Х*+90*; Откуда 6Х=180*>>Х=30*;Значит угол между высотой ВД и стороной СД равен 60*; В таком случае, приняв за 1 сторону СД,Получим высоту ВД равную 1/2( лежащий против угла 30*), а другую сторону ВС равную \/3/2; Найдем большую диагональ АС, она будет равна (1/2)^2+(\/3/2)^2=\/(1/4+3)=\/13/2; Имеем:диагональ АС=\/13/2; и диагональ ВД=1/2; их отношение будет как \/13:1; ответ:\/13:1
Окружность, вписанная в треугольник АВС с периметром, равным 20 см, делит точкой касания сторону АС на отрезки АК = 5 см, КС = 3 см. Определите, каким является треугольник: остроугольным, тупоугольным или прямоугольным?
Объяснение:
По т. об отрезках касательных АК=АР=5 см, СК=СМ=3 см.
Р=АВ+ВС+АС ,
20=(5+ВР)+(3+ВМ)+(5+3),
4=ВР+ВМ , но ВР=ВМ, тогда ВР=ВМ=2 см.
АВ= 7 см, ВС=5 см, АС=8 см .
Проверим условие а²+в² ....?....c²
7²+5²=49+25=74
8²=64 , 74>64 значит ΔАВС-остроугольный т.к. " Если квадрат наибольшей стороны меньше суммы квадратов двух других сторон:
с² < a²+b² треугольник остроугольный. "