Медиана, опущенная на основание, в равнобедренном треугольнике, является высотой и биссектрисой (рисунок 1) По теореме Пифагора находим AB: AB² = AH²+BH² = 160²+40²=27200 AB = 40√17
Рисунок 2. На луче AO отложим отрезок OD, OD=AO. Соединим точку D с точками B и C. Рассмотрим четырехугольник ABDC. BO=CO (так как AO — медиана треугольника ABC); AO=DO (по построению). Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ABDC — параллелограмм. По свойству диагоналей параллелограмма AD²+BC²=2*(AB²+AC²) AD²+(40√17)²=2*((40√17)²+80²) AD²=2*(27200+6400)-27200 AD²=40000 AD = 200 AO = AD/2 = 200/2 = 100
Медианы AO и CO1 равны (рисунок 3). т.е. AO = CO1 = 100
AC находится по теореме Пифагора и равна √136 1 рисунок.
На 2 рисунке. На луче AA1 отложим отрезок A1K, A1K=AA1. Соединим точку K с точками C и B. Рассмотрим четырехугольник ACKB. CA1=BA1 (так как AA1 — медиана треугольника ABC); AA1=KA1 (по построению).Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ACKB — параллелограмм. По свойству диагоналей параллелограма AK²+BC² = 2*(AC²+AB²) AK²+(√136)²=2*((√136)²+20²) AK²=2*(136+400)-136 AK²=936 AK = 6√26 AA1 = AK/2 = (6√26)/2=3√26 AA1=BB1 = 3√26
По теореме Пифагора находим AB:
AB² = AH²+BH² = 160²+40²=27200
AB = 40√17
Рисунок 2. На луче AO отложим отрезок OD, OD=AO. Соединим точку D с точками B и C. Рассмотрим четырехугольник ABDC. BO=CO (так как AO — медиана треугольника ABC); AO=DO (по построению). Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ABDC — параллелограмм.
По свойству диагоналей параллелограмма
AD²+BC²=2*(AB²+AC²)
AD²+(40√17)²=2*((40√17)²+80²)
AD²=2*(27200+6400)-27200
AD²=40000
AD = 200
AO = AD/2 = 200/2 = 100
Медианы AO и CO1 равны (рисунок 3).
т.е. AO = CO1 = 100
1 рисунок.
На 2 рисунке. На луче AA1 отложим отрезок A1K, A1K=AA1. Соединим точку K с точками C и B.
Рассмотрим четырехугольник ACKB. CA1=BA1 (так как AA1 — медиана треугольника ABC); AA1=KA1 (по построению).Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ACKB — параллелограмм.
По свойству диагоналей параллелограма
AK²+BC² = 2*(AC²+AB²)
AK²+(√136)²=2*((√136)²+20²)
AK²=2*(136+400)-136
AK²=936
AK = 6√26
AA1 = AK/2 = (6√26)/2=3√26
AA1=BB1 = 3√26