Параллельные прямые а и b лежат в плоскости y. через прямую а проведена плоскость а, а через прямую b — плос- кость ß так, что плоскости а и ß пересекаются по прямой с. докажите, что с| |ү.
Если вращение происходит вокруг оси OX и интересует объем на отрезке от 4 до 9, то V = V1-V2, где V1 - объем под кривой корня квадратного, V2 - объем цилиндра с радиусом 2 (под прямой y=2). Вспоминаем, что объем тела вращения вокруг OX будет равен п умноженному на определенный интеграл квадрата функции образующей на заданном интервале X. Получается следующее выражение: V = п*интеграл(от 4 до 9){xdx} - п*интеграл(от 4 до 9){2*2*dx} = 3.14*((9*9/2-4*4/2)-(2*2*9-2*2*4)) = 3.14*((81-16)/2 - 4*5) = 39.25
Если вращение происходит вокруг оси OX и интересует объем на отрезке от 4 до 9, то V = V1-V2, где V1 - объем под кривой корня квадратного, V2 - объем цилиндра с радиусом 2 (под прямой y=2). Вспоминаем, что объем тела вращения вокруг OX будет равен п умноженному на определенный интеграл квадрата функции образующей на заданном интервале X. Получается следующее выражение: V = п*интеграл(от 4 до 9){xdx} - п*интеграл(от 4 до 9){2*2*dx} = 3.14*((9*9/2-4*4/2)-(2*2*9-2*2*4)) = 3.14*((81-16)/2 - 4*5) = 39.25