Рассмотрим приложенный рисунок. Треугольники АВМ и АДТ равны по двум катетам. Следовательно, все углы в них равны. Из равенства углов этих треугольников следует, что треугольник АКМ прямоугольный, т.к. в нем острые углы равны острым углам прямоугольных треугольников. Отсюда подобие треугольников АВМ и АКМ. Коэффициент подобия треугольников найдем из отношения их гипотенуз. k=ВМ:АМ ВМ=√(АВ²+АМ²)=√125=5√5 Отношение площадей подобных фигур равно квадрату коэффициента их подобия. k=(5√5):5=√5 S(ABM):S (AKM)=k²=5 S(ABM)=10*5:2=25 S (AKM)=25:5=5
1)образующая получается равна 12-ти, потому что высота лежит напротив угла 30 градусов в прямоугольном треугольнике вттреугольник получается равносторонний, так как угол 60 градусов, а другие две стороны равны, следовательно два других угла равны и они тоже 60 градусов така площадь треугольника это 1/2 на произведение двух сторон на синус угла между ними... площадь= 1/2 * 12*12* √3/2 = 36*√3 2)Обозначу ABCD - осевое сечение. Точки A и B лежат на верхнем круге, C и D лежат на нижнем круге. ABCD - квадрат => AB=BC=CD=AD AC=12 см Рассмотрим треугольник ABC. Он прямоугольный (угол B равен 90 градусов) По теореме Пифагора (AC)^2 = (AB)^2 + (BC)^2 (AC)^2 = 2(AB)^2 144 = 2(AB)^2 72 = (AB)^2 AB = 6sqrt(2) {sqrt - корень квадратный} AB=BC=CD=AD = 6sqrt(2)
Пусть O - центр верхнего круга, O1 - центр нижнего круга. Так как ABCD - осевое сечение, то O лежит на AB, O1 лежит на CD.
Таким образом h = OO1 = BC = 6sqrt(2) r = OA = 1/2 * AB = 3sqrt(2)
Тогда S = 2Пrh = 2П*3sqrt(2)*6sqrt(2) = 72П 3)- 4) Обозначим О -центр шара, А- конец радиуса, В - конец другого радиуса, проведенного перпендикулярно к ОА. АВ- диаметр сечения. Из равнобедренного прямоугольного треугольника найдем АВ ( любым известным Например, по теореме Пифагора) АВ=8корней из 2. Т.е. диаметр сечения 8корней из 2. Следовательно радиус сечения 4 корня из 2. Площадь сечения 32 пи
Треугольники АВМ и АДТ равны по двум катетам.
Следовательно, все углы в них равны.
Из равенства углов этих треугольников следует, что треугольник АКМ прямоугольный, т.к. в нем острые углы равны острым углам прямоугольных треугольников.
Отсюда подобие треугольников АВМ и АКМ.
Коэффициент подобия треугольников найдем из отношения их гипотенуз.
k=ВМ:АМ
ВМ=√(АВ²+АМ²)=√125=5√5
Отношение площадей подобных фигур равно квадрату коэффициента их подобия. k=(5√5):5=√5
S(ABM):S (AKM)=k²=5
S(ABM)=10*5:2=25
S (AKM)=25:5=5
вттреугольник получается равносторонний, так как угол 60 градусов, а другие две стороны равны, следовательно два других угла равны и они тоже 60 градусов
така площадь треугольника это 1/2 на произведение двух сторон на синус угла между ними...
площадь= 1/2 * 12*12* √3/2 = 36*√3 2)Обозначу ABCD - осевое сечение. Точки A и B лежат на верхнем круге, C и D лежат на нижнем круге.
ABCD - квадрат => AB=BC=CD=AD
AC=12 см
Рассмотрим треугольник ABC. Он прямоугольный (угол B равен 90 градусов)
По теореме Пифагора
(AC)^2 = (AB)^2 + (BC)^2
(AC)^2 = 2(AB)^2
144 = 2(AB)^2
72 = (AB)^2
AB = 6sqrt(2) {sqrt - корень квадратный}
AB=BC=CD=AD = 6sqrt(2)
Пусть O - центр верхнего круга, O1 - центр нижнего круга. Так как ABCD - осевое сечение, то O лежит на AB, O1 лежит на CD.
Таким образом
h = OO1 = BC = 6sqrt(2)
r = OA = 1/2 * AB = 3sqrt(2)
Тогда
S = 2Пrh = 2П*3sqrt(2)*6sqrt(2) = 72П 3)- 4)
Обозначим О -центр шара, А- конец радиуса, В - конец другого радиуса, проведенного перпендикулярно к ОА. АВ- диаметр сечения. Из равнобедренного прямоугольного треугольника найдем АВ ( любым известным Например, по теореме Пифагора) АВ=8корней из 2. Т.е. диаметр сечения 8корней из 2. Следовательно радиус сечения 4 корня из 2. Площадь сечения 32 пи