Параллелограмм клмн. край на краю lm p. прямая линия np и kl пересекаются в точке r. a) сделайте чертеж, соответствующий ситуации! б) найти и написать все пары одинаковых треугольников! оправдай сходство треугольников!
1) Со стороны тупого угла верхнего основания опускаем перпендикуляр на нижнее основание - трапеция разобьётся на две фигуры: прямоугольник и треугольник.
2) У прямоугольника противоположные стороны равны, поэтому нижняя сторона прямоугольника равна 16.
3) 24 - 16 = 8 - это основание треугольника.
Этот треугольник - равнобедренный, т.к. угол при основании равен 45°, согласно условию, а второй угол также равен 45°:
1) Найдём высоту трапеции с формулы площади трапеции:
200 = ((21+29)/2)*x
200 = (50/2)*x
200 = 25x
x = 8 (Высота трапеции)
2) Прямоугольная трапеция состоит из треугольника и прямоугольника
Один катет треугольника 8 (высота трапеции), теперь находим второй катет:
29-21 = 8
3) Треугольник получается равнобедренным, между катетами угол 90 градусов. А по свойствам равнобедренного треугольника углы при основании равны, значит:
160
Объяснение:
1) Со стороны тупого угла верхнего основания опускаем перпендикуляр на нижнее основание - трапеция разобьётся на две фигуры: прямоугольник и треугольник.
2) У прямоугольника противоположные стороны равны, поэтому нижняя сторона прямоугольника равна 16.
3) 24 - 16 = 8 - это основание треугольника.
Этот треугольник - равнобедренный, т.к. угол при основании равен 45°, согласно условию, а второй угол также равен 45°:
180 (сумма внутренних углов треугольника) - 45 - 90 = 45°.
Следовательно, вторая сторона треугольника (она же высота трапеции) равна 8.
4) Площадь трапеции равна произведению полусуммы её оснований на высоту:
((16+24) : 2) · 8 = 40 : 2 · 8 = 20 · 8 = 160
ответ: 160
45 градусов
Объяснение:
1) Найдём высоту трапеции с формулы площади трапеции:
200 = ((21+29)/2)*x
200 = (50/2)*x
200 = 25x
x = 8 (Высота трапеции)
2) Прямоугольная трапеция состоит из треугольника и прямоугольника
Один катет треугольника 8 (высота трапеции), теперь находим второй катет:
29-21 = 8
3) Треугольник получается равнобедренным, между катетами угол 90 градусов. А по свойствам равнобедренного треугольника углы при основании равны, значит:
(180-90)/2 = 45 градусов (острый угол)
Тупой же угол = 45+90 = 135 градусов