Проекции точек D и С на плоскость а - это перпендикуляры DD1 и СС1, опущенные из точек D и С на плоскость а. Соединив точки А, В, С1 и D1 получим проекцию нашего ромба АВСD на плоскость а. Это будет параллелограмм АВС1D1 с противоположными сторонами АВ, С1D1 и ВС1, АD1 . В прямоугольном треугольнике АНD DH=AD*Sinф. Если Sinф=√5/4, то DН=9*√5/4. Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения. В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16. S=9*45√3/16=405√3/16
Т.к. ∠ АОВ=∠ВОС=...=∠GОА=2π/7, то площадь одного из семи треугольников АОВ, ВОС,СОD, ...GОА может быть найдена как
0.5R²*sin2π/7, тогда площадь правильного семиугольника равна
3.5R²*sin2π/7=70⇒площадь искомой фигуры, состоящей из трех равных треугольников найдем так (3/7)(70)=30/см²/
да. еще раз. есть формула площади для треугольника.
это - половина произведения двух сторон на синус угла между ними. а 2π/7 - это центральный угол, а заодно и угол между данными сторонами. Нам нужно только увидеть. что таких треугольников равных семь, у правильного семиугольника, а нас интесуют только три из семи, т.е. 3/7 от 70
Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения.
В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16.
S=9*45√3/16=405√3/16
Т.к. ∠ АОВ=∠ВОС=...=∠GОА=2π/7, то площадь одного из семи треугольников АОВ, ВОС,СОD, ...GОА может быть найдена как
0.5R²*sin2π/7, тогда площадь правильного семиугольника равна
3.5R²*sin2π/7=70⇒площадь искомой фигуры, состоящей из трех равных треугольников найдем так (3/7)(70)=30/см²/
да. еще раз. есть формула площади для треугольника.
это - половина произведения двух сторон на синус угла между ними. а 2π/7 - это центральный угол, а заодно и угол между данными сторонами. Нам нужно только увидеть. что таких треугольников равных семь, у правильного семиугольника, а нас интесуют только три из семи, т.е. 3/7 от 70