Проведем из вершины отрезки , где точка пересечение с окружностью. Обозначим точку перпендикуляра с . Получим четырехугольник , который вписан в окружность. По теореме Птолемея , так как лежит на центре , то треугольники прямоугольные. . Откуда при подстановке получаем соотношение . Так как Четырехугольник прямоугольник. Заметим что - высота прямоугольного треугольника , тогда . Откуда по Теореме Пифагора , так как является высотой прямоугольного треугольника , то
Обозначим трапецию АВСД. угол С=угол Д=90 градусов. так как в трапецию можно вписать окружность, то суммы противоположных сторон равны ВС+АД=СД+АВ. проведём высоту ВК. Она разделила трапецию на прямоугольник ДСВК и прямоугольный треугольник АВК. Так как острый уголА = 45 градусов, то второй острый угол АВК = 90-45=45 градусов, значит треугольник равнобедренный, ВК=АК. Пусть АК=х тогда и ВК=х, по т. Пифагора х²+х²=(12√2)², 2х²=144·2, х²=144, х=12, АК=12 см, ВК=12 см, тогда и СД=12 см.S(ABCD)=1/2·(АД+ВС)·ВК=1/2·(12+12√2)·12=72·(1+√2)
Получим четырехугольник , который вписан в окружность.
По теореме Птолемея , так как лежит на центре , то треугольники прямоугольные.
.
Откуда при подстановке получаем соотношение
.
Так как
Четырехугольник прямоугольник.
Заметим что - высота прямоугольного треугольника
, тогда
.
Откуда по Теореме Пифагора
, так как является высотой прямоугольного треугольника , то
тогда
проведём высоту ВК. Она разделила трапецию на прямоугольник ДСВК и прямоугольный треугольник АВК. Так как острый уголА = 45 градусов, то второй острый угол АВК = 90-45=45 градусов, значит треугольник равнобедренный, ВК=АК.
Пусть АК=х тогда и ВК=х, по т. Пифагора х²+х²=(12√2)², 2х²=144·2, х²=144, х=12, АК=12 см, ВК=12 см, тогда и СД=12 см.S(ABCD)=1/2·(АД+ВС)·ВК=1/2·(12+12√2)·12=72·(1+√2)