рассмотрим отрезок ав = 6 см. возьмём точку н на стороне ав такую, что нв = см (меньше 6 см, так как 14 меньше 36). восстановим перпендикуляр из точки н к ав и отметим точку с на этом перпендикуляре так, чтобы нс = 2 см.
а) по т. пифагора cв = = = = 4 (cм)
б) площадь равна = = 6 (см)
2) может
рассмотрим прямоугольный треугольник с катетами 6 см и 4 см. s = = = 12 (cм)
3) не может
пусть есть δавс, ав = 6см, вс = 4 см. сн ≤ св (где сн - высота), значит сн ≤ 4 см. s = ≤ = 12 (см²) ≤ 14 (см²)
1) может
рассмотрим отрезок ав = 6 см. возьмём точку н на стороне ав такую, что нв = см (меньше 6 см, так как 14 меньше 36). восстановим перпендикуляр из точки н к ав и отметим точку с на этом перпендикуляре так, чтобы нс = 2 см.
а) по т. пифагора cв = = = = 4 (cм)
б) площадь равна = = 6 (см)
2) может
рассмотрим прямоугольный треугольник с катетами 6 см и 4 см. s = = = 12 (cм)
3) не может
пусть есть δавс, ав = 6см, вс = 4 см. сн ≤ св (где сн - высота), значит сн ≤ 4 см. s = ≤ = 12 (см²) ≤ 14 (см²)
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²