AD не является основанием, так как AB и BD не равны.
Предположим, что BD является основанием. Тогда ∠ADB - острый, смежный ∠ADC - тупой. В равнобедренном △ADC тупой угол может быть только против основания, но ∠DAC и ∠С не равны. Следовательно BD не является основанием.
Установили, что AB - основание равнобедренного △ABD.
Пусть B=BAD =x
Тогда ADC=2x (внешний угол)
В равнобедренном △ADC:
AC не является основанием, так как ∠DAC и ∠С не равны.
Объяснение:
Дано:
<AOB и <COD
<COD внутри <AOB
AO ┴ OD; CO ┴ OB;
<AOB - <COD = 90°
Найти: <AOB и <COD.
Решение
Т.к . AO ┴ OD; CO ┴ OB,
то <AOD = 90; <COB = 90°.
<COD = <AOD - <AOC
<COD = <COB - <DOB
<COD = 90° - <AOC
<COD = 90° - <DOB
Получим
<AOC = 90° - <COD
<DOB = 90° - <COD
Следовательно <AOC = <DOB
2) По условию: <AOB - <COD = 90°
Но если от всего угла <AOB отнять <COD, то останутся два равных угла <AOC и <DOB, значит, это их сумма равна 90°.
<AOC + <DOB = 90° =>
<AOC = <DOB = 90°/2 = 45°
3) <COD = 90° - <DOB
<COD = 90° - 45°=45°
4) <AOB = <AOC + <DOB + <DOB
<AOB = 45° + 45° + 45° = 135°
ответ: <AOB - 135°; <COD =45°.
AC - основание равнобедренного △ABC.
Провели прямую AD.
В равнобедренном △ABD:
AD не является основанием, так как AB и BD не равны.
Предположим, что BD является основанием. Тогда ∠ADB - острый, смежный ∠ADC - тупой. В равнобедренном △ADC тупой угол может быть только против основания, но ∠DAC и ∠С не равны. Следовательно BD не является основанием.
Установили, что AB - основание равнобедренного △ABD.
Пусть B=BAD =x
Тогда ADC=2x (внешний угол)
В равнобедренном △ADC:
AC не является основанием, так как ∠DAC и ∠С не равны.
Возможны два случая:
1) DC является основанием
ADC=C=A =2x
A+B+C=180 => 5x=180 => x=36
B =36°
A=C =72°
2) AD является основанием
ADC=DAC=2x => A=C=3x
A+B+C=180 => 7x=180 => x=180/7
B =180°/7 ~25,71°
A=C =540°/7 ~77,14°