Переріз ,який проведено паралельно основі шестикутної піраміди,ділить висоту піраміди у відношенні 4:9, рахуючи від вершини. Обчислити площу перерізу, якщо площа основи=676дм^2
Семён Дежнёв является первооткрывателем пролива между Евразией и северной Америкой.Через 80 лет,после Дежнева,Витус Беринг доказал существование пролива ,по приказу Петра Первого,на чьей службе он состоял.Проливу было присвоено имя Беринга.Донесениям Дежнева не придали значения,посчитав их не очень важными и только Пётр Великий обратил внимание на донесения, понял стратегическую важность открытия.Он отправил Беринга на исследование пролива,требуя доказательства.Витус с честью выполнил свою миссию,поэтому проливу и дали его имя.К сожалению,история знает немало примеров,когда одни открывают,а слава достаётся другим.
Пусть углы будут А В С, эти буквы легче набирать центр описанной окружности лежит на пересечении срединных перпендикуляров, проведя котрые и соединив центр описанной окружности с вершинами треугольника, получим три треугольника с основаниями равными длинам сторон а в с и высотами равными R радиусу описанной окружности. Искомая площадь равна сумме площадей этих 3-х треугольников
S=aR/2+bR/2+cR/2=R/2*(a+b+c)
Для определения сторон а в с воспользуемся теоремой синусов справедливой для вписанного треугольника
а/sinA=b/sinB=c/sinC=2R
выразив стороны получим a=2RsinA b=2RsinB c=2RsinC
центр описанной окружности лежит на пересечении срединных перпендикуляров, проведя котрые и соединив центр описанной окружности с вершинами треугольника, получим три треугольника
с основаниями равными длинам сторон а в с и высотами равными R радиусу
описанной окружности. Искомая площадь равна сумме площадей этих 3-х
треугольников
S=aR/2+bR/2+cR/2=R/2*(a+b+c)
Для определения сторон а в с воспользуемся теоремой синусов справедливой для вписанного треугольника
а/sinA=b/sinB=c/sinC=2R
выразив стороны получим
a=2RsinA
b=2RsinB
c=2RsinC
Тогда площадь равна:
S=R^2 *(sinA+sinB+sinC)