2. диагонали трапеции пересекаются и образуют два подобных треугольника, опирающихся на основания трапеции; в случае равнобедренной трапеции эти треугольники тоже равнобедренные и (по условию) прямоугольные (т.к. углы при основании по 45°); следовательно, диагонали данной трапеции перпендикулярны.
3. площадь четырехугольника, диагонали которого перпендикулярны, равна половине произведения диагоналей (это верно не только для ромба)
Нужно выучить теоремы и основываясь на них писать доказательства. Например, если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны. Чтобы доказать эту теорему нам нужно найти две стороны и угол между ними и показать, по чему они равны, по каким признакам мы можем это увидеть. На фото самый базовый пример. В учебниках также приводят примеры доказательств и, конечно же, внимательнее слушай на уроках
ответ: 9 (ед^2)
Объяснение:
1. диагонали равнобедренной трапеции равны.
2. диагонали трапеции пересекаются и образуют два подобных треугольника, опирающихся на основания трапеции; в случае равнобедренной трапеции эти треугольники тоже равнобедренные и (по условию) прямоугольные (т.к. углы при основании по 45°); следовательно, диагонали данной трапеции перпендикулярны.
3. площадь четырехугольника, диагонали которого перпендикулярны, равна половине произведения диагоналей (это верно не только для ромба)
S = 3*√2*3*√2 / 2 = 9