Пирамида правильная, следовательно, в основании лежит правильный треугольник. Площадь полной поверхности - площадь основания+площадь боковой поверхности. Площадь основания S(o) вычислим по формуле: S=(а²√3):4 S(о)=(9√3):4 Площадь боковой поверхности Sб - по формуле Sб=Р*(апофема):2 Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/ Апофему МН найдем из прямоугольного треугольника МОН. Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2 МО=ОН. ОН=r=(3√3):6=(√3):2 МН=(√3):2)*√2=(√3*√2):2 Р=3*3=9 Sб=9*(√3*√2):2):2=9*(√3*√2):4 см² Sполн=(9√3):4+(9*√3*√2):4 Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см² ---- bzs*
Отрезок EF отнюдь не является средней линией треугольника! Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1. То есть отрезок ВО в 2 раза больше отрезка ОD. Рассмотрим два треугольника: основной АВС и верхний EBF. Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка - постоянная величина.. Но это же относится и к другим отрезкам, не только к сторонам. В частности, к медианам. Легко увидеть, чему равно отношение медиан ВО/ВD = 2/3. Значит, и отношение оснований такое же: EF / 15 = 2/3 Отсюда EF = 10 см.
Площадь полной поверхности - площадь основания+площадь боковой поверхности.
Площадь основания S(o) вычислим по формуле:
S=(а²√3):4
S(о)=(9√3):4
Площадь боковой поверхности Sб - по формуле
Sб=Р*(апофема):2
Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/
Апофему МН найдем из прямоугольного треугольника МОН.
Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2
МО=ОН.
ОН=r=(3√3):6=(√3):2
МН=(√3):2)*√2=(√3*√2):2
Р=3*3=9
Sб=9*(√3*√2):2):2=9*(√3*√2):4 см²
Sполн=(9√3):4+(9*√3*√2):4
Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см²
----
bzs*
EF / 15 = 2/3
Отсюда EF = 10 см.
Как то так :3