Периметр фигуры G равен 8 см, а площадь равна 7см2. При гомотетии (O; 4) получили фигуру H, гомотетичную фигуре G. Чему равен периметр фигуры H? Чему равна площадь фигуры H?
Пусть дан равносторонний треугольник АВС, с высотой АН и сторонами а. В него вписана окружность с центром в точке О и радиусом R.Найдем высоту треугольника.
Высота АН равностороннего треугольника,она же медиана и биссектриса. А значит по свойству медианы ВН=НС=ВС/2=а/2, по свойству высоты <AHB=<AHC=90°.
Рассмотрим треугольник АНС, он прямоугольный <H=90°, с гипотенузой а, и катетами НС=а/2, и АН.
Найдем катет АН треугольника по теореме Пифагора:
АН=√(АС²-НС²)=√(а²+а²/4).
Радиус окружности вписанной в треугольник:
R=√((p-AC)(p-CB)(p-AB)/p).
Найдем полу периметр:
p=(1/2)(AC+CB+AB)=(1/2)(а+а+а)=3а/2 см.
Подсчитаем радиус:
R=√((p-AC)(p-CB)(p-AB)/p=√((3а/2-а)(3а/2-а)(3а/2-а)/(3а/2))= а/√12 см.
Выразим из этого выражения а:
а=R√12.
Подставим в выражение для определения высоты:
АН=√(а²+а²/4)=√((R√12)²+(R√12/2)²)=√(9*R²)=√(9*64)=24 см.
Объяснение:
Пусть дан равносторонний треугольник АВС, с высотой АН и сторонами а. В него вписана окружность с центром в точке О и радиусом R.Найдем высоту треугольника.
Высота АН равностороннего треугольника,она же медиана и биссектриса. А значит по свойству медианы ВН=НС=ВС/2=а/2, по свойству высоты <AHB=<AHC=90°.
Рассмотрим треугольник АНС, он прямоугольный <H=90°, с гипотенузой а, и катетами НС=а/2, и АН.
Найдем катет АН треугольника по теореме Пифагора:
АН=√(АС²-НС²)=√(а²+а²/4).
Радиус окружности вписанной в треугольник:
R=√((p-AC)(p-CB)(p-AB)/p).
Найдем полу периметр:
p=(1/2)(AC+CB+AB)=(1/2)(а+а+а)=3а/2 см.
Подсчитаем радиус:
R=√((p-AC)(p-CB)(p-AB)/p=√((3а/2-а)(3а/2-а)(3а/2-а)/(3а/2))= а/√12 см.
Выразим из этого выражения а:
а=R√12.
Подставим в выражение для определения высоты:
АН=√(а²+а²/4)=√((R√12)²+(R√12/2)²)=√(9*R²)=√(9*64)=24 см.
ответ: АН = 24 см.
х=3, у=3
Объяснение:
Итак, 13я задача при условии, что х у параллельны основаниям трапеции.
Рассмотрим △ACD и △OCN. У них угол при вершине С общий, а, например, <CON=<CAD как соответственные, значит △ACD ~ △OCN. =>
1) ON/AD=OC/AC.
Треугольники △AOD и △COB, образованные отрезками диагоналей и основаниями трапеции, подобны - свойство трапеции. =>
2) OC/AO=BC/AD
3) AO=AC-OC Подставим в 2):
OC/(AC-OC)=4/12=1/3
3*OC=AC-OC
4*OC=AC
OC/AC=1/4
Подставим это отношение в 1):
ON/12=1/4
ON=12*1/4=3
Значит у=3
Таким же образом из подобия △AOD ~ △COB выписываем OB/OD=BC/AD; а из подобия △ABD ~ △MBO выписываем OM/AD=OB/BD.
OD=BD-OB
Подставляем всё точно так же.
OB/(BD-OB)=4/12=1/3
OB/BD=1/4
OM/12=1/4
OM=x=3