В условии не было сказано о рисунке, я не вводил переменных, поэтому претензий к решению не принимаю.
Объяснение: диагонали ромба разбивают его на четыре равных прямоугольных треугольника, т.к. диагонали ромба взаимно перпендикулярны, поэтому, если коэффициент пропорциональности равен х, то 3х+7х+90=180, т.к. сумма углов треугольника равна 180°⇒10х=90; х=9, значит, углы ромба будут соответственно равны 2*3х=6*9°=54° и 2*7х=14°*9=126°; я удвоил углы треугольника, т.к. диагонали являются биссектрисами внутренних углов ромба. а т.к. противоположные углы ромба равны, то искомые углы ромба равны 54°; 126°; 54°; 126°
Рассмотрим прямоугольный треугольник MNP. NH - высота, проведённая к гипотенузе, следовательно, она является средним геометрическим для отрезков MH и HP.
Следовательно :
Тогда площадь прямоугольного треугольника MNP равна половине произведения высоты и стороны, к которой проведена эта высота.
MP - диагональ. Диагональ параллелограмма делит параллелограмм на два равных (в частности и на равновеликих) треугольника. Следовательно, площадь прямоугольника MNPK равна произведению площади треугольника MNP на два.
ответ: 54°; 126°; 54°; 126°
В условии не было сказано о рисунке, я не вводил переменных, поэтому претензий к решению не принимаю.
Объяснение: диагонали ромба разбивают его на четыре равных прямоугольных треугольника, т.к. диагонали ромба взаимно перпендикулярны, поэтому, если коэффициент пропорциональности равен х, то 3х+7х+90=180, т.к. сумма углов треугольника равна 180°⇒10х=90; х=9, значит, углы ромба будут соответственно равны 2*3х=6*9°=54° и 2*7х=14°*9=126°; я удвоил углы треугольника, т.к. диагонали являются биссектрисами внутренних углов ромба. а т.к. противоположные углы ромба равны, то искомые углы ромба равны 54°; 126°; 54°; 126°
Рассмотрим прямоугольный треугольник MNP. NH - высота, проведённая к гипотенузе, следовательно, она является средним геометрическим для отрезков MH и HP.
Следовательно :
Тогда площадь прямоугольного треугольника MNP равна половине произведения высоты и стороны, к которой проведена эта высота.
MP - диагональ. Диагональ параллелограмма делит параллелограмм на два равных (в частности и на равновеликих) треугольника. Следовательно, площадь прямоугольника MNPK равна произведению площади треугольника MNP на два.
S(MNPK) = 39*2 = 78.
ответ: 78 (ед^2).