Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы (назовем эту точку О). Координаты середины отрезка ВС: х = (- 3 + 1)/2 = - 1 у = (2 + 0)/2 = 1 Итак, прямая проходит через точки А(- 3 ; 0) и О(- 1 ; 1)
Уравнение прямой: y = kx + b Подставим координаты точек А и О в уравнение: 0 = -3k + b 1 = - k + b это система уравнений. Вычтем из второго первое: 1 = 2k b = 3k
Треугольник АВС, АВ=ВС, О-центр окружности, ВО=20, проводим перпендикуляр из точки О на АС=медиане=биссектрисе=радиусу, длина окружности=2*пи*радиус, 24пи=2*пи*радиус, радиус=12, проводим АО и СО - биссектрисы углов А и С соответственно, центр вписанной окружности лежит на пересечении биссектрис, , т.к ВО тоже биссектриса, АО=ВО=СО=20, треугольникАОС равнобедренный, АН=СН=корень(АО в квадрате-ОН в квадрате)=корень(400-144)=16, АС=2*АН=2*16=32, треугольник АВН, ВН=ВО+ОН=20+12=32, АВ=ВС=корень(АН в квадрате+ВН в квадрате)=корень(256+1024)=16*корень5, периметр=16*корень5+16*корень5+32=32*корень5+32
Длины сторон треугольника АВС:
АВ = √((-3 + 3)² + (0 - 2)²) = √4 = 2
ВС = √((- 3 - 1)² + (2 - 0)²) = √20 = 2√5
АС = √((- 3 - 1)² + (0 - 0)²) = √16 = 4
ВС - наибольшая сторона, значит ВС - гипотенуза, а ∠А = 90°.
Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы (назовем эту точку О).
Координаты середины отрезка ВС:
х = (- 3 + 1)/2 = - 1
у = (2 + 0)/2 = 1
Итак, прямая проходит через точки
А(- 3 ; 0) и О(- 1 ; 1)
Уравнение прямой: y = kx + b
Подставим координаты точек А и О в уравнение:
0 = -3k + b
1 = - k + b это система уравнений.
Вычтем из второго первое:
1 = 2k
b = 3k
k = 1/2
b = 3/2
y = 1/2x + 3/2