АВ = CD так как трапеция равнобедренная, ∠BAD = ∠CDA как углы при основании равнобедренной трапеции, AD - общая сторона для треугольников ABD и DCA, ⇒ ΔABD = ΔDCA по двум сторонам и углу между ними, значит ∠CAD = ∠BDA = 45°, ⇒ ΔAOD равнобедренный, а так как два угла в нем по 45°, то угол при вершине ∠AOD = 90°.
ΔВОС так же прямоугольный равнобедренный.
Проведем высоту трапеции через точку пересечения диагоналей. Обозначим основания а и b. В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине. В равнобедренном ΔAOD h₁ - это высота и медиана, значит h₁ = a/2. В равнобедренном ΔВОС h₂ - это высота и медиана, значит h₂ = b/2. Высота трапеции равна: h = h₁ + h₂ = a/2 + b/2 = (a + b)/2, т.е. высота равна средней линии. Стоит запомнить: в равнобедренной трапеции с перпендикулярными диагоналями высота равна средней линии. h = (4 + 16)/2 = 10
Из точки O, лежащей вне двух параллельных плоскостей α и β, проведены 3 луча, пересекающие плоскости α и β соответственно в точках A,B,C и A1,B1,C1 (OA<OA1). Найдите периметр A1B1C1, если OA=m, AA1=n, AB=c, BC=a., CA=b.
Если две параллельные плоскости пересечены другой плоскостью, то линии их пересечения параллельны. Значит треугольник А1ОВ1 подобен АОВ - Плоскость пересечения принадлежит обоим треугольникам, а основания параллельны, так как являются линиями пересечения. Таким же образом треугольники B1OC1 подобен BOC, а C1OD1 подобен COD. Коэффициент подобия находим из соотношения OA1 /OA . Если стороны треугольников подобны значит и сами треугольники ABC и A1B1C1 подобны. Периметр ABC умноженный на коэффициент подобия будет равен периметру A1B1C1. периметр A1B1C1 = (a+b+c) (m+n)/m
∠BAD = ∠CDA как углы при основании равнобедренной трапеции,
AD - общая сторона для треугольников ABD и DCA, ⇒
ΔABD = ΔDCA по двум сторонам и углу между ними, значит
∠CAD = ∠BDA = 45°, ⇒
ΔAOD равнобедренный, а так как два угла в нем по 45°, то угол при вершине ∠AOD = 90°.
ΔВОС так же прямоугольный равнобедренный.
Проведем высоту трапеции через точку пересечения диагоналей.
Обозначим основания а и b.
В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине.
В равнобедренном ΔAOD h₁ - это высота и медиана, значит
h₁ = a/2.
В равнобедренном ΔВОС h₂ - это высота и медиана, значит
h₂ = b/2.
Высота трапеции равна:
h = h₁ + h₂ = a/2 + b/2 = (a + b)/2, т.е. высота равна средней линии.
Стоит запомнить:
в равнобедренной трапеции с перпендикулярными диагоналями высота равна средней линии.
h = (4 + 16)/2 = 10
Sabcd = (a + b)/2 · h = h² = 10² = 100
Найдите периметр A1B1C1, если OA=m, AA1=n, AB=c, BC=a., CA=b.
Если две параллельные плоскости пересечены другой плоскостью, то линии их пересечения параллельны. Значит треугольник А1ОВ1 подобен АОВ - Плоскость пересечения принадлежит обоим треугольникам, а основания параллельны, так как являются линиями пересечения. Таким же образом треугольники B1OC1 подобен BOC, а C1OD1 подобен COD. Коэффициент подобия находим из соотношения OA1 /OA . Если стороны треугольников подобны значит и сами треугольники ABC и A1B1C1 подобны.
Периметр ABC умноженный на коэффициент подобия будет равен периметру A1B1C1.
периметр A1B1C1 = (a+b+c) (m+n)/m