Пусть коэффициент отношения углов данного треугольника будет х. Тогда один угол равен х, второй 3х, третий 5х. Сумма углов треугольника равна 180° Следовательно, х+3х+5х=180° х=20° Углы треугольника равны соответственно 20°, 60°, 100° Сумма углов четырехугольника равна 360°. Каждый четырехугольник, образованный отрезками сторон от вершин до точки касания и радиусами, имеет по два прямых угла ( радиусы в точке касания перпендикулярны сторонам, которых окружность касается). Следовательно, угол между радиусами, противолежащий углу 20°, равен 360°-90°*2-20°=160°, точно так же угол напротив угла 60° равен 120° а угол напротив угла 100° равен 80° Проверка: 160+120+80=360 градусов.
Треугольник АВС. Угол А : углу В : углу С = 1:3:5
х+3х+5х=180
9х=180
х=20
Угол А = 20 град
Угол В = 20*3=60 град
Угол С = 20*5=100 град
Р, М, К - точки касания окружности сторон треугольника соответственно на сторонах АВ, ВС и АС
О - центр окружности
Рассмотрим четырёхугольник АКОР. УголК + угол Р =90+90=180 град (радиусы, проведённые в точки касания), значит
угол КОР + уголА = 360-180=180 град
угол КОР = 180-20=160 град.
Аналогично рассуждаем при нахождении углов РОМ и МОК
угол РОМ = 180-60=120 град
угол МОК = 180-100=80 град
Тогда один угол равен х, второй 3х, третий 5х.
Сумма углов треугольника равна 180°
Следовательно,
х+3х+5х=180°
х=20°
Углы треугольника равны соответственно 20°, 60°, 100°
Сумма углов четырехугольника равна 360°.
Каждый четырехугольник, образованный отрезками сторон от вершин до точки касания и радиусами, имеет по два прямых угла ( радиусы в точке касания перпендикулярны сторонам, которых окружность касается).
Следовательно, угол между радиусами, противолежащий углу 20°, равен 360°-90°*2-20°=160°,
точно так же угол напротив угла 60° равен 120°
а угол напротив угла 100° равен 80°
Проверка:
160+120+80=360 градусов.