Периметр правильного треугольника, вписанного в окружность, равен 27 см. Найдите периметр и площадь правильного четырехугольника, описанного около этой же окружности.
30=2*3*5 - произвеление взаимно простых чисел. Значит, достаточно доказать, что делится на 2, на 3, на 5
1) деление на 2
6п⁵+40п³ естественно, четное, т.е. делится на 2
15п⁴-п=п(15п³-1) если п - четное, то произведение делится на 2, если п нечетное, то в скобках получается четное число, т.е. опять произведение делится на 2.
2) деление на 3
6п⁵+15п⁴=3(2п⁵+5п⁴) - естественно , делится на 3
40п³-п=39п³+п³-п первое слагаемое делится на 3, провероим остальное . п³-п=п*(п²-1)=(п-1)*п*(п+1) имеем произведение последовательных чисел, одно из которыз ОБЯЗАТЕЛЬНО кратно 3.
1. ΔАВС и ΔАDС равны по второму признаку равенства треугольников. в них АС- общая. а углы, прилежащие к этой стороне, равны по условию. Поэтому АВ=DС, ВС=АD, значит, по признаку параллелограмма четырехугольник АВСD - параллелограмм. Доказано.
5. BD- общая для ΔАВD и ΔDСВ, стороны ВС и АD -равны по условию, углы между ВD и ВС и ВD и DА равны по условию. значит, ΔАВD и ΔDСВ равны по первому признаку равенства треугольников. а ВС и АD равны и параллельны, т.к. ∠СВD=∠АDВ, а это внутренние накрест лежащие при ВС и АD и секущей ВD, по признаку четырехугольник АВСD - параллелограмм. Доказано.
7. Из равенства этих треугольников вытекает равенство сторон АВ и С D , кроме того, углы ВАО и СОD равны, но это внутренние накрест лежащие при прямых АВ и СD, секущей АС, значит, прямые АВ ║ СD.
По признаку четырехугольник АВСD - параллелограмм. Доказано.
30=2*3*5 - произвеление взаимно простых чисел. Значит, достаточно доказать, что делится на 2, на 3, на 5
1) деление на 2
6п⁵+40п³ естественно, четное, т.е. делится на 2
15п⁴-п=п(15п³-1) если п - четное, то произведение делится на 2, если п нечетное, то в скобках получается четное число, т.е. опять произведение делится на 2.
2) деление на 3
6п⁵+15п⁴=3(2п⁵+5п⁴) - естественно , делится на 3
40п³-п=39п³+п³-п первое слагаемое делится на 3, провероим остальное . п³-п=п*(п²-1)=(п-1)*п*(п+1) имеем произведение последовательных чисел, одно из которыз ОБЯЗАТЕЛЬНО кратно 3.
3) 15п⁴+40п² естественно делится на 5
проверим 6п⁵-п
6п⁵-п=5п⁵+п⁵-п
5п⁵ делится на 5, проверим п⁵-п
п⁵-п=п*(п⁴-1)=п(п²-1)(п²+1)=п(п-1)(п+1)(п²+1)=п(п-1)(п+1)(п²-4+5)=
=п(п-1)(п+1)(п²-4)+5п(п-1)(п+1) второе слагаемое делится на 5, проверим первое
п(п-1)(п+1)(п²-4)=п(п-1)(п+1)(п-2)(п+2)=(п-2)(п-1)п(п+1)(п+2) имеем произведение последовательных 5 чисел, из которых одно обязательно делится на 5
Все.
1. ΔАВС и ΔАDС равны по второму признаку равенства треугольников. в них АС- общая. а углы, прилежащие к этой стороне, равны по условию. Поэтому АВ=DС, ВС=АD, значит, по признаку параллелограмма четырехугольник АВСD - параллелограмм. Доказано.
5. BD- общая для ΔАВD и ΔDСВ, стороны ВС и АD -равны по условию, углы между ВD и ВС и ВD и DА равны по условию. значит, ΔАВD и ΔDСВ равны по первому признаку равенства треугольников. а ВС и АD равны и параллельны, т.к. ∠СВD=∠АDВ, а это внутренние накрест лежащие при ВС и АD и секущей ВD, по признаку четырехугольник АВСD - параллелограмм. Доказано.
7. Из равенства этих треугольников вытекает равенство сторон АВ и С D , кроме того, углы ВАО и СОD равны, но это внутренние накрест лежащие при прямых АВ и СD, секущей АС, значит, прямые АВ ║ СD.
По признаку четырехугольник АВСD - параллелограмм. Доказано.