Мальчик-школьник теряется в тайге и выходит к заповедному озеру, полному рыбы. Найдя дорогу домой, он приводит к новому месту рыболовную бригаду своего отца, после чего озеро называют его именем.
Рыбакам из бригады Григория Афанасьевича Шадрина, Васюткиного отца, не везло. Вода в реке поднялась, и рыба ушла на глубину. Вскоре с юга подул тёплый ветер, но уловы оставались небольшими. Рыбаки отошли далеко в низовья Енисея и остановились в избушке, построенной когда-то учёной экспедицией. Там и остались ждать осеннюю путину.
Рыбаки отдыхали, чинили сети и снасть, ловили рыбу перемётами, а Васютка каждый день ходил за кедровыми орехами — очень уж любили рыбаки это лакомство. Иногда мальчик заглядывал в новые учебники, привезённые из города, готовился к школе. Вскоре шишек на ближайших кедрах не осталось, и Васютка решил отправиться в дальний поход за орешками. По старинному обычаю мать заставила мальчика взять с собой краюшку хлеба и спички, а без ружья Васютка никогда в тайгу не ходил.
Суміжними називаються два кути, одна сторона яких спільна, а дві інші утворюють пряму, тобто є доповняльними променями.
Сума суміжних кутів дорівнює 180 градусам.
Два суміжних кути утворюють розгорнутий кут.
Якщо два кути рівні, то суміжні з ними кути теж рівні.
Кут, суміжний із прямим кутом, є прямим.
Кут, суміжний з гострим кутом, є тупим.
Кут, суміжний з тупим кутом, є гострим.
Будь-який промінь, що виходить із вершини розгорнутого кута і проходить між його сторонами, поділяє його на два суміжні кути.
Якщо два кути рівні, то суміжні з ними кути також рівні.
Два кути, суміжні з одним і тим же кутом, рівні.
Якщо два суміжні кути рівні, то вони прямі.
Вертикальними називаються два кути, сторони одного з яких є додатковими променями до сторін другого кута.
Вертикальні кути рівні.
При перетині двох прямих утворюються дві пари вертикальних кутів і чотири пари суміжних кутів.
Якщо відомий один із кутів, що утворились при перетині двох прямих, то знайти інші кути можна таким чином: знайти кут, суміжний з даним, враховуючи, що їх сума 180 градусів, після чого знайти кути, вертикальні з відомими, враховуючи, що вертикальні кути рівні.
Запам’ятайте поняття про теорему, аксіому та доведення.
Доведення — міркування про правильність твердження про властивість тієї або іншої геометричної фігури.
Теорема — твердження, яке треба довести.
Аксіома — твердження, що не потребують доведення, і які містяться у формулюваннях основних властивостей найпростіших фігур.
Мальчик-школьник теряется в тайге и выходит к заповедному озеру, полному рыбы. Найдя дорогу домой, он приводит к новому месту рыболовную бригаду своего отца, после чего озеро называют его именем.
Рыбакам из бригады Григория Афанасьевича Шадрина, Васюткиного отца, не везло. Вода в реке поднялась, и рыба ушла на глубину. Вскоре с юга подул тёплый ветер, но уловы оставались небольшими. Рыбаки отошли далеко в низовья Енисея и остановились в избушке, построенной когда-то учёной экспедицией. Там и остались ждать осеннюю путину.
Рыбаки отдыхали, чинили сети и снасть, ловили рыбу перемётами, а Васютка каждый день ходил за кедровыми орехами — очень уж любили рыбаки это лакомство. Иногда мальчик заглядывал в новые учебники, привезённые из города, готовился к школе. Вскоре шишек на ближайших кедрах не осталось, и Васютка решил отправиться в дальний поход за орешками. По старинному обычаю мать заставила мальчика взять с собой краюшку хлеба и спички, а без ружья Васютка никогда в тайгу не ходил.
Суміжні та вертикальні кути, їх властивості
Суміжними називаються два кути, одна сторона яких спільна, а дві інші утворюють пряму, тобто є доповняльними променями.
Сума суміжних кутів дорівнює 180 градусам.
Два суміжних кути утворюють розгорнутий кут.
Якщо два кути рівні, то суміжні з ними кути теж рівні.
Кут, суміжний із прямим кутом, є прямим.
Кут, суміжний з гострим кутом, є тупим.
Кут, суміжний з тупим кутом, є гострим.
Будь-який промінь, що виходить із вершини розгорнутого кута і проходить між його сторонами, поділяє його на два суміжні кути.
Якщо два кути рівні, то суміжні з ними кути також рівні.
Два кути, суміжні з одним і тим же кутом, рівні.
Якщо два суміжні кути рівні, то вони прямі.
Вертикальними називаються два кути, сторони одного з яких є додатковими променями до сторін другого кута.
Вертикальні кути рівні.
При перетині двох прямих утворюються дві пари вертикальних кутів і чотири пари суміжних кутів.
Якщо відомий один із кутів, що утворились при перетині двох прямих, то знайти інші кути можна таким чином: знайти кут, суміжний з даним, враховуючи, що їх сума 180 градусів, після чого знайти кути, вертикальні з відомими, враховуючи, що вертикальні кути рівні.
Запам’ятайте поняття про теорему, аксіому та доведення.
Доведення — міркування про правильність твердження про властивість тієї або іншої геометричної фігури.
Теорема — твердження, яке треба довести.
Аксіома — твердження, що не потребують доведення, і які містяться у формулюваннях основних властивостей найпростіших фігур.