Периметр рівнобедреної трапеції дорівнює 60 см. Більша основа у 2 рази більша від меншої основи. Бічна сторона на 3 см більша, ніж менша основа. Обчисли довжини сторін трапец
• 3. Теперь, мы узнаём сторону квадрата. Это записывается так:
3)900 : 4 = 225 ( м ) – сторона квадрата
• 4. А теперь, мы можем узнать площадь квадрата, и потом в пятом действии записать и сравнить, чья площадь больше – квадрата или прямоугольника. Но смотря, какая у вас программа : если у вас программа Л.Г. Петерсона, то записывать нужно, но, а если у вас программа Рудницкой или Моро и др., то не нужно. Это записывается так:
4)225 ˣ 225 = 50 625 ( м² )
• 5. А вот когда мы узнали площадь квадрата и прямоугольника, то мы можем сравнить, чья площадь больше. Это записывается так:
5)50 625 > 32 400
• или...
5)32 400 < 50 625
• 6. А вот на сколько площадь квадрата больше площади прямоугольника мы не знаем. Но мы можем решить! Для этого нам нужно:
6)50 625 – 32 400 = 18 225 ( м )
— | Мы узнали то, что площадь квадрата больше площади прямоугольника. И на сколько. Мы можем записать ответы. ответы, потому что у нас в данной задаче два во ответ: Площадь участка квадратной формы больше площади участка прямоугольной формы; на 18 225 м площадь участка квадратной формы больше площади участка прямоугольной формы.
` ` — Здравствуйте, Levva007! ` `
• Объяснение:
— | Прежде чем нам решить данную задачу, сначала нужно отметить в ней главные слова: | —
• Первый участок имеет форму прямоугольника со сторонами 360 м и 90 м, второй участок имеет форму квадрата.
— | Отметили. Теперь, когда мы знаем главные слова в данной задаче, мы можем начать её решать. | —
• Решение:
• 1. Сначала, мы с вами должны узнать площадь прямоугольника. Это записывается так:
1)360 ˣ 90 = 32 400 ( м² ) – площадь прямоугольника.
• 2. Теперь, мы можем узнать периметр прямоугольника. Это записывается так:
2)360 ˣ 2 + 90 ˣ 2 = 900 ( м ) – периметр прямоугольника
• 3. Теперь, мы узнаём сторону квадрата. Это записывается так:
3)900 : 4 = 225 ( м ) – сторона квадрата
• 4. А теперь, мы можем узнать площадь квадрата, и потом в пятом действии записать и сравнить, чья площадь больше – квадрата или прямоугольника. Но смотря, какая у вас программа : если у вас программа Л.Г. Петерсона, то записывать нужно, но, а если у вас программа Рудницкой или Моро и др., то не нужно. Это записывается так:
4)225 ˣ 225 = 50 625 ( м² )
• 5. А вот когда мы узнали площадь квадрата и прямоугольника, то мы можем сравнить, чья площадь больше. Это записывается так:
5)50 625 > 32 400
• или...
5)32 400 < 50 625
• 6. А вот на сколько площадь квадрата больше площади прямоугольника мы не знаем. Но мы можем решить! Для этого нам нужно:
6)50 625 – 32 400 = 18 225 ( м )
— | Мы узнали то, что площадь квадрата больше площади прямоугольника. И на сколько. Мы можем записать ответы. ответы, потому что у нас в данной задаче два во ответ: Площадь участка квадратной формы больше площади участка прямоугольной формы; на 18 225 м площадь участка квадратной формы больше площади участка прямоугольной формы.
` ` — С уважением, EvaTheQueen! ` `
ответ: 1) 70*, 110*, 70*, 110*.
2) 50*, 130*, 50*, 130*.
3) 30*,150*, 30*, 150*.
Объяснение:
Сумма углов в четырехугольнике (а параллелограмм - четырехугольник) равно 360*.
Кроме того противоположные углы равны, а сумма углов, прилежащих к одной из сторон равна 180*.
Пусть угол А - острый, а угол В - тупой.
Значит
1) ∠В-∠А=40*. То есть ∠В больше ∠А на 40*.
Пусть ∠А=х, тогда ∠В=х+40. В сумме они равны 180*.
х+х+40=180*;
2х=140*;
х=70* - ∠А;
х+40*=70*+40*=110* - ∠В.
Так как противоположные углы в параллелограмме равны, то:
∠С=∠А=70*;
∠D=∠B=110*
Проверим:
70*+110*+70*+110*=140*+220*=360*. Все верно.
2) ∠В-∠А=80*. То есть угол В на 80* больше угла А.
∠А=х, ∠В=х+80*.
х+х+80*=180*
2х=100*;
х=50* - ∠А;
х+80*=50*+80*=130* - ∠В.
∠А=∠С=50*;
∠В=∠D=130*.
Проверим:
50*+130*+50*+130*=100*+260*=360*. Все верно.
3) ∠В-∠А=120*. Значит ∠В больше ∠А на 120*.
∠А=х, ∠В=х+120*.
х+х+120*=180*.
2х=60*;
х=30* - ∠А;
х+120*=30*+120*=150* - ∠В.
∠А=∠С=30*;
∠В=∠D=150*.
Проверим:
30*+150*+30*+150*=60*+300*=360*. Все верно.