а доказательство (аргументы для решения) может быть разным...
т.к. хорды по условию имеют общую точку (точку С), следовательно, ∡АСВ=90°
расстояние (которое нужно найти) называется радиусом окружности - это расстояние от центра до точки на окружности (до точки С)
известно: Прямой угол опирается на диаметр (диаметр=2*радиус).
"Расстояние между серединами" сторон треугольника - это средняя линия треугольника.
известно: Средняя линия треугольника (соединяет середины двух сторон треугольника) параллельна третьей стороне треугольника и равна ее половине. ---> диаметр=20; радиус=10...
а еще можно вспомнить: Около любого прямоугольника можно описать окружность. Радиус, перпендикулярный хорде, делит ее пополам. Диагонали прямоугольника равны.
на рисунке я провела эти радиусы и получился еще один прямоугольник (четверть большого прямоугольника), в котором диагонали равны...
DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
ответ: 10 (т.е. и вычислять ничего не нужно)))
а доказательство (аргументы для решения) может быть разным...
т.к. хорды по условию имеют общую точку (точку С), следовательно, ∡АСВ=90°
расстояние (которое нужно найти) называется радиусом окружности - это расстояние от центра до точки на окружности (до точки С)
известно: Прямой угол опирается на диаметр (диаметр=2*радиус).
"Расстояние между серединами" сторон треугольника - это средняя линия треугольника.
известно: Средняя линия треугольника (соединяет середины двух сторон треугольника) параллельна третьей стороне треугольника и равна ее половине. ---> диаметр=20; радиус=10...
а еще можно вспомнить: Около любого прямоугольника можно описать окружность. Радиус, перпендикулярный хорде, делит ее пополам. Диагонали прямоугольника равны.
на рисунке я провела эти радиусы и получился еще один прямоугольник (четверть большого прямоугольника), в котором диагонали равны...