Периметр рівнобедреного трикутника дорівнює 37 см, а його основа менша від бічної сторони на 5см. Знайти сторони цього трикутника. У відповідь записати довжину бічної сторони.
Обозначим трапецию АВСД. АД- большее основание, ВС -меньшее. Биссектрисы углов В и С пересекаются на АД в точке Р.Угол АРВ и РВС равны как накрест лежащие. Поскольку ВР биссектриса , то и угол АВР=АРВ. То есть АВР равнобедренный треугольник. АВ=АР=30. По аналогии получаем СД=РД=25. Тогда болтшее основание АД=АР+РД=30+25=55. Проведём высоты к АД, ВМ=СК=24. По теореме Пифагора находим АМ=корень из(АВквадрат-ВМквадрат)=корень из(900-576)=18, аналогично СК=7. Тогда МК=ВС=55-18-7=30. Площадь трапеции S=(АД+ВС)/2*Н=(55+30)/2*24=1020.
проведем в пирамиде диагонали основания и на их пересечении поставим точку О Диагональ квадрата со стороной 1 равна √2 половина диагонали √2/2
От точки О на сторону AD опустим перпендикуляр, из точки S сделаем тоже самое. Поставим точку М. Треугольник АDS равносторонний, поэтому перпендикуляр из вершины S на сторону AD тоже попадет в точку M
SO - высота правильной пирамиды равна половине диагонали основания.
SO=√2/2
SM - высота равностороннего треугольника ADS равна √3/2AD=√3/2
Обозначим трапецию АВСД. АД- большее основание, ВС -меньшее. Биссектрисы углов В и С пересекаются на АД в точке Р.Угол АРВ и РВС равны как накрест лежащие. Поскольку ВР биссектриса , то и угол АВР=АРВ. То есть АВР равнобедренный треугольник. АВ=АР=30. По аналогии получаем СД=РД=25. Тогда болтшее основание АД=АР+РД=30+25=55. Проведём высоты к АД, ВМ=СК=24. По теореме Пифагора находим АМ=корень из(АВквадрат-ВМквадрат)=корень из(900-576)=18, аналогично СК=7. Тогда МК=ВС=55-18-7=30. Площадь трапеции S=(АД+ВС)/2*Н=(55+30)/2*24=1020.
проведем в пирамиде диагонали основания и на их пересечении поставим точку О Диагональ квадрата со стороной 1 равна √2 половина диагонали √2/2
От точки О на сторону AD опустим перпендикуляр, из точки S сделаем тоже самое. Поставим точку М. Треугольник АDS равносторонний, поэтому перпендикуляр из вершины S на сторону AD тоже попадет в точку M
SO - высота правильной пирамиды равна половине диагонали основания.
SO=√2/2
SM - высота равностороннего треугольника ADS равна √3/2AD=√3/2
Треугольник МОS - прямоугольный угол О=90 градусов.
Косинус угла МS0 равен отношению прилежащего катета к гипотенузе
CosМS0=SO/SM=√(2/3)
sinMSO=корень(1-(√(2/3)^2)=1/√3