1. АА₁ - биссектриса,
ВВ₁ - медиана,
СС₁ - высота.
2. АВ = СВ,
∠АВЕ = ∠СВЕ,
ВЕ - общая сторона.
ΔАВЕ = ΔСВЕ по 1 признаку (по двум сторонам и углу между ними).
3. ∠ВАС = 180° - ∠1 по свойству смежных углов.
∠ВАС = 180° - 110° = 70°.
В равнобедренном треугольнике углы при основании равны, значит
∠ВСА = ВАС = 70°
∠BDC = 90°, так как в равнобедренном треугольнике медиана, проведенная к основанию, является высотой.
4. ОМ = ОК по условию,
∠DMO = ∠BKO по условию,
∠DOM = ∠BOK как вертикальные, значит
ΔDMO = ΔBKO по стороне и двум прилежащим к ней углам.
В равных треугольниках напротив равных сторон лежат равные углы, значит ∠MDO = ∠KBO, а так же OD = OB.
Треугольник DOB равнобедренный, значит углы при основании равны:
∠ODB = ∠OBD.
∠MDB = ∠MDO + ∠ODB
∠KBD = ∠KBO + ∠OBD, а так как ∠MDO = ∠KBO и ∠ODB = ∠OBD, то
∠MDB = ∠KBD, т.е. ∠D = ∠B
Объяснение:
№3
<1+<2=180°
Пусть градусная мера угла <1 будет 2х°, тогда градусная мера угла <2 будет 7х°.
Составляем уравнение.
2х+7х=180°
9х=180
х=180/9
х=20
2*20=40° градусная мера <1;
7*20=140° градусная мера угла <2.
<3=<2, вертикальные углы.
<3=140°
ответ: <3=140°
№4
<2+<1=180°
Пусть градусная мера угла<1 будет х°, тогда градусная мера угла <2 будет 4х°.
Составляем уравнение
х+4х=180
5х=180
х=180/5
х=36° градусная мера угла <1;
4*36=144° градусная мера угла <2
<1=<3, вертикальные углы
<3=36°
ответ: <3=36°
1. АА₁ - биссектриса,
ВВ₁ - медиана,
СС₁ - высота.
2. АВ = СВ,
∠АВЕ = ∠СВЕ,
ВЕ - общая сторона.
ΔАВЕ = ΔСВЕ по 1 признаку (по двум сторонам и углу между ними).
3. ∠ВАС = 180° - ∠1 по свойству смежных углов.
∠ВАС = 180° - 110° = 70°.
В равнобедренном треугольнике углы при основании равны, значит
∠ВСА = ВАС = 70°
∠BDC = 90°, так как в равнобедренном треугольнике медиана, проведенная к основанию, является высотой.
4. ОМ = ОК по условию,
∠DMO = ∠BKO по условию,
∠DOM = ∠BOK как вертикальные, значит
ΔDMO = ΔBKO по стороне и двум прилежащим к ней углам.
В равных треугольниках напротив равных сторон лежат равные углы, значит ∠MDO = ∠KBO, а так же OD = OB.
Треугольник DOB равнобедренный, значит углы при основании равны:
∠ODB = ∠OBD.
∠MDB = ∠MDO + ∠ODB
∠KBD = ∠KBO + ∠OBD, а так как ∠MDO = ∠KBO и ∠ODB = ∠OBD, то
∠MDB = ∠KBD, т.е. ∠D = ∠B
Объяснение:
№3
<1+<2=180°
Пусть градусная мера угла <1 будет 2х°, тогда градусная мера угла <2 будет 7х°.
Составляем уравнение.
2х+7х=180°
9х=180
х=180/9
х=20
2*20=40° градусная мера <1;
7*20=140° градусная мера угла <2.
<3=<2, вертикальные углы.
<3=140°
ответ: <3=140°
№4
<2+<1=180°
Пусть градусная мера угла<1 будет х°, тогда градусная мера угла <2 будет 4х°.
Составляем уравнение
х+4х=180
5х=180
х=180/5
х=36° градусная мера угла <1;
4*36=144° градусная мера угла <2
<1=<3, вертикальные углы
<3=36°
ответ: <3=36°