обозначим проекции точек а; в; с; d и точки о - точки пересечения диагоналей :
a_(1); b_(1); c_(1); d_(1); o_(1)
рассмотрим прямоугольные трапеции aa_(1)d_(1)d и вв_(1)с_(1)с
пересекаются по прямой оо_(1)
оо_(1)- средняя линия трапеции aa_(1)d_(1)d
оо_(1)- средняя линия трапеции вв_(1)с_(1)с
так как средняя линия трапеции равна полусумме оснований, то
из трапеции aa_(1)d_(1)d:
оо_(1)=(аа_(1)+dd_(1))/2
из трапеции вв_(1)с_(1)с :
оо_(1)=(bb_(1)+cc_(1))/2
приравниваем правые части:
(аа_(1)+dd_(1))/2=(bb_(1)+cc_(1))/2 ⇒ [b]аа_(1)+dd_(1)=bb_(1)+cc_(1)[/b]
Что и требовалось доказать!
Перпендикулярные прямые - прямые, которые пересекаются и при пересечении образуют прямых угла. (углы, градусная мера которых составляет ).
Допустим, данные прямые перпендикулярны.
Тогда все три угла равны по .
Сумма градусных мер трех неразвернутых углов, образованных при пересечение двух прямых, меньше , по условию.
Проверим:
Исходя из этого, мы доказали, что прямые не перендикулярны, так как сумма неразвёрнутых углов составляет ровно , что не соответствует условию.
обозначим проекции точек а; в; с; d и точки о - точки пересечения диагоналей :
a_(1); b_(1); c_(1); d_(1); o_(1)
рассмотрим прямоугольные трапеции aa_(1)d_(1)d и вв_(1)с_(1)с
пересекаются по прямой оо_(1)
оо_(1)- средняя линия трапеции aa_(1)d_(1)d
оо_(1)- средняя линия трапеции вв_(1)с_(1)с
так как средняя линия трапеции равна полусумме оснований, то
из трапеции aa_(1)d_(1)d:
оо_(1)=(аа_(1)+dd_(1))/2
из трапеции вв_(1)с_(1)с :
оо_(1)=(bb_(1)+cc_(1))/2
приравниваем правые части:
(аа_(1)+dd_(1))/2=(bb_(1)+cc_(1))/2 ⇒ [b]аа_(1)+dd_(1)=bb_(1)+cc_(1)[/b]
Что и требовалось доказать!
Объяснение:Перпендикулярные прямые - прямые, которые пересекаются и при пересечении образуют прямых угла. (углы, градусная мера которых составляет ).
Допустим, данные прямые перпендикулярны.
Тогда все три угла равны по .
Сумма градусных мер трех неразвернутых углов, образованных при пересечение двух прямых, меньше , по условию.
Проверим:
Исходя из этого, мы доказали, что прямые не перендикулярны, так как сумма неразвёрнутых углов составляет ровно , что не соответствует условию.