Периметр равнобедренной трапеции равен 20 см. то чка касания вписанной в трапецию окружности делит ее боковую сторону на отрезни один из которых на 3 см длиннее другой . найдите площадь трапеции . умоляю !
Обозначим катеты а и в, радиус вписанной окружности r. На катетах отрезки от острого угла до точки касания вписанной окружности тоже равны 3 и 7. Тогда катеты равны r+3 и r+7. По Пифагору (r+3)² + (r+7)² = 10². r²+6r+9+r²+14r+49 = 100. 2r²+20r-42 = 0, r²+10r-21 = 0. Квадратное уравнение, решаем относительно r: Ищем дискриминант: D=10^2-4*1*(-21)=100-4*(-21)=100-(-4*21)=100-(-84)=100+84=184;Дискриминант больше 0, уравнение имеет 2 корня: r_1=(√184-10)/(2*1)=√184/2-10/2=√46-5 ≈1,78233;r_2=(-√184-10)/(2*1)=-√184/2-10/2=-√46-5 ≈ -11,78233 этот отрицательный корень отбрасываем. Определяем катеты: а = √46-5+3 = √46-2, в = √46-5+7 = √46+2. Площадь S треугольника равна: S = (1/2)ab = (1/2)*(√46-2)*(√46+2) = (1/2)*(46-4) = 42/2 = 21 кв.ед.
1. Построение чертежа.
ВС и АD - столбы; АВ - расстояние между столбами; СD - перекладина.
Переворачиваем чертёж, получаем прямоугольную трапецию АВСD.
2. Решение задачи (х-неизвестное на чертеже).
1) Провели высоту СЕ трапеции АВСD.
Получили прямоугольник АВСЕ, в котором ВС=АЕ, СЕ=АВ (по св-ву прямоугольника). Следовательно, высота СЕ=6,8м.
2) Если АЕ=ВС=7,8м, а АD=АЕ+ЕD, то ЕD=11,6м-7,8м=3,8м.
3) Рассмотрим ΔСЕD (прямоугольный). В нём известны 2 катета.
По т.Пифагора найдём гипотенузу СD.
СD²=СЕ²+ЕD² ⇔ СD=√6,8²+3,8² ⇔ СD=√60,68м.
3. ответ: длина перекладины √60,68м.
p.s. если нужно приблизительное рациональное число, то длина перекладины 7м<CD<8м или ≈7,79м.
На катетах отрезки от острого угла до точки касания вписанной окружности тоже равны 3 и 7.
Тогда катеты равны r+3 и r+7.
По Пифагору (r+3)² + (r+7)² = 10².
r²+6r+9+r²+14r+49 = 100.
2r²+20r-42 = 0,
r²+10r-21 = 0.
Квадратное уравнение, решаем относительно r: Ищем дискриминант:
D=10^2-4*1*(-21)=100-4*(-21)=100-(-4*21)=100-(-84)=100+84=184;Дискриминант больше 0, уравнение имеет 2 корня:
r_1=(√184-10)/(2*1)=√184/2-10/2=√46-5 ≈1,78233;r_2=(-√184-10)/(2*1)=-√184/2-10/2=-√46-5 ≈ -11,78233 этот отрицательный корень отбрасываем.
Определяем катеты:
а = √46-5+3 = √46-2,
в = √46-5+7 = √46+2.
Площадь S треугольника равна:
S = (1/2)ab = (1/2)*(√46-2)*(√46+2) = (1/2)*(46-4) = 42/2 = 21 кв.ед.