Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Рассмотрим ΔАВD. Он - прямоугольный, так как ВD⊥АВ⇒∠DВА=90°. Найдем ∠АDВ по теореме о сумме ∠Δ: ∠АDВ=180°-60°-90°=30° Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°. При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60° ⇒ АВСD - равнобедренная трапеция(по признаку) Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120° ∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120° ответ: 60°, 60°, 120°, 120°
∠АDВ=180°-60°-90°=30°
Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°.
При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60°
⇒ АВСD - равнобедренная трапеция(по признаку)
Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120°
∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120°
ответ: 60°, 60°, 120°, 120°