Периметр ромба abcd равен 16 см , а угол bad = 60 градусов . высоты bp и bt ромба являются радиусами круга . вычислить площадь сектора , расположенного внутри четырехугольника bpdt.
1. Измерить провести окружность с центром в вершине неразвернутого угла и радиусом, равным длине отрезка. 2. Соединить точки пересечения окружности со сторонами угла. 3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы. 4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.
2. Соединить точки пересечения окружности со сторонами угла.
3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы.
4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.
1)Т.к. диагональ BD вдвое больше стороны АВ, следовательно АВ=ВО=OD, следовательно треугольник АВО равнобедренный
2)угол АОD=112 градусов, по условию, тогда угол ВОА=180-АОD=180-112=68градусов(по свойству смежного угла)
3)т.к. треугольник АВО- равнобедренный, следовательно углы при основании равны, тогда угол ВАО=ВОА=68градусов
4)угол CAD= 40градусов по условию, тогда угол BAD=BAO+CAD=68+40=108 градусов
5)угол CDA=180-BAD=180-108=72градуса(по свойству односторонних углов в параллелограмме)
ответ:4(72градуса)