Периметр ромба ABCD равен 32, АК-высота. точка K-принадлежит стороне BC и делит её пополам Найдите угол между высотами ромба проведенными из вершины большего угла.
У задачи 2 решения. 1) Хорда находится между центром окружности и касательной. Тогда искомое расстояние от хорды до касательной - разность между длиной радиуса, проведенного в точку касания, и расстоянием от центра окружности до хорды. Пусть К - точка касания, ОК - радиус, проведенный в нее, ОМ - расстояние от центра до хорды ( часть радиуса). ОМ⊥АВ, т.к. радиус перпендикулярен касательной, а хорда - ей параллельна. По свойству радиуса, перпендикулярного хорде, он делит ее пополам. АМ=ВМ=36:2=18. ОА - радиус. АМ - катет. МО=√(АО²-ОМ²)=80 Отсюда искомое расстояние МК=82-80=2 (ед. длины). 2) Порядок расположения - хорда, центр, касательная. Тогда искомое расстояние МК=ОК+ОМ=82+80=162 (ед. длины).
Объём прямой треугольной призмы: V=Sh (где S – площадь основания, h – высота данной призмы).
Площадь прямоугольного треугольника равна половине произведения катетов: S=(6*8)/2=24 кв. см.
Формула площади боковой поверхности призмы: S(б)=Ph (где Р – периметр основания). Выразим из этой формулы высоту: h=S/P.
Для нахождения периметра по теореме Пифагора найдем гипотенузу основания: c=√(a^2+b^2) (где с – гипотенуза а, b – катеты) с=√(6^2+8^2)= √(36+64)= √100= 10 см.
P=a+b+c=6+8+10=24 см h=240/24=10 см. V=24*10=240 куб. см.
1) Хорда находится между центром окружности и касательной.
Тогда искомое расстояние от хорды до касательной - разность между длиной радиуса, проведенного в точку касания, и расстоянием от центра окружности до хорды.
Пусть К - точка касания, ОК - радиус, проведенный в нее, ОМ - расстояние от центра до хорды ( часть радиуса).
ОМ⊥АВ, т.к. радиус перпендикулярен касательной, а хорда - ей параллельна.
По свойству радиуса, перпендикулярного хорде, он делит ее пополам.
АМ=ВМ=36:2=18.
ОА - радиус. АМ - катет. МО=√(АО²-ОМ²)=80
Отсюда искомое расстояние МК=82-80=2 (ед. длины).
2)
Порядок расположения - хорда, центр, касательная.
Тогда искомое расстояние МК=ОК+ОМ=82+80=162 (ед. длины).
Площадь прямоугольного треугольника равна половине произведения катетов: S=(6*8)/2=24 кв. см.
Формула площади боковой поверхности призмы: S(б)=Ph (где Р – периметр основания).
Выразим из этой формулы высоту: h=S/P.
Для нахождения периметра по теореме Пифагора найдем гипотенузу основания: c=√(a^2+b^2) (где с – гипотенуза а, b – катеты)
с=√(6^2+8^2)= √(36+64)= √100= 10 см.
P=a+b+c=6+8+10=24 см
h=240/24=10 см.
V=24*10=240 куб. см.