Периметр треугольника ABC равен 8 см, периметр треугольника DEF равен 10 см.
Докажи, что периметр шестиугольника PKLMNR меньше 9 см.
1. Рассмотри треугольники PAK, KDL, LBM, MEN, NCR и RFP, напиши для каждого из них неравенство треугольника для сторон, которые также являются сторонами шестиугольника:
В треугольнике PAK: PK < PA +
;
В треугольнике KDL: KL < + ;
В треугольнике LBM: < + ;
В треугольнике MEN: < + ;
В треугольнике NCR: < + ;
В треугольнике RFP: < + .
Варианты ответов:
2. Если сложить левые и правые стороны правильных неравенств, то получится правильное неравенство.
Которые из величин задания получились в левой стороне после сложения?
Периметр треугольника ABC
Удвоенный периметр треугольника DEF
Периметр шестиугольника PKLMNR
Периметр треугольника DEF
Удвоенный периметр треугольника ABC
Удвоенный периметр шестиугольника PKLMNR
3. Если к обеим сторонам правильного неравенства добавить одну и ту же величину, то получится правильное неравенство.
Добавь к обеим сторонам полученного в предыдущем шаге правильного неравенства PK+KL+LM+MN+NR+RP.
Которые из величин задания получились в левой стороне после сложения?
Периметр треугольника ABC
Удвоенный периметр треугольника DEF
Периметр треугольника DEF
Удвоенный периметр шестиугольника PKLMNR
Удвоенный периметр треугольника ABC
Периметр шестиугольника PKLMNR
4. Которые из величин задания получились в правой стороне после сложения?
Удвоенный периметр треугольника DEF
Периметр шестиугольника PKLMNR
Удвоенный периметр треугольника ABC
Удвоенный периметр шестиугольника PKLMNR
Периметр треугольника ABC
Периметр треугольника DEF
5. Чему равна правая сторона полученного неравенства, если использовать данные числовые значения?
ответ:
.
6. Что необходимо сделать с обеими сторонами полученного неравенства, чтобы доказать, что периметр шестиугольника PKLMNR меньше 9 см?
Невозможно доказать
Вычитать 2
Добавить 2
Делить на 2
Умножить на 2
1. AB
2. угол B
3. Основание.
4. a, b - катеты, с - гипотенуза.
а < с, b < c
5. КМ
6. 8 см
Объяснение:
1. Найдем угол С = 180 - (58+66) = 56
угол C меньше чем углы А и B.
Так как напротив меньшего угла лежит меньшая сторона, то АB будет меньшей стороной
2. Напротив большего угла большая сторона, значит напротив большей стороны - больший угол.
АС больше чем АВ и АD, напротив АС угол В
3. Тупым углом считается угол, больше чем 90 градусов. В равнобедренном треугольнике углы при основании равны, значит, если мы возьмём за тупой угол угол при основании, то получим что в треугольнике будет два тупых угла, и их сумма будет превышать 180, что невозможно по теореме о сумме углов треугольника. Значит, тупым углом будет угол при вершине. Так как угол при вершине тупой, два оставшихся угла при основании - острые и равны. Острый угол при меньше, чем тупой при вершине, а значит сторона, лежащая напротив угла при вершине, будет являться большей. Сторона, лежащая напротив угла при вершине в равнобедренном треугольнике является основанием, значит основание будет больше, чем боковые стороны.
4. Так как напротив гипотенузы лежит прямой угол в 90°, то по теореме о сумме углов треугольника, сумма двух других углов = 90°, а значит два других угла в любом случае будут меньше чем прямой угол => угол в 90° - самый больший, а значит и гипотенуза, лежащая напротив него, будет больше катетов.
5. Так как гипотенуза всегда больше, чем катет, то КМ будет являться гипотенузой.
Проверим через теорему Пифагора
4²+3² = 5²
16 + 9 = 25
25 = 25, √25 = 5 => 5=5
6. Треугольник равнобедренный, значит у него две равные стороны и основание. Возьмём за основание 16 см, значит, боковая сторона 8 см. По свойству равнобедренного треугольника вторая боковая сторона тоже будет 8 см. Проверим по теореме о сумме сторон(сумма двух сторон не должна быть больше оставшейся стороны)
8+8=16 чм, вторая сторона тоже 16 см, значит, длина третьей стороны - 8 см
Возьмём за боковую сторону 16 см, тогда основание будет 8 см. Точно так же по свойству равнобедренного треугольника получим, что вторая боковая сторона будет 16 см. Проверим по теореме о сумме сторон:
16+16 = 32 см, 32 см > 8 см => такого треугольника не существует.
1. AB
2. угол B
3. Основание.
4. a, b - катеты, с - гипотенуза.
а < с, b < c
5. КМ
6. 8 см
Объяснение:
1. Найдем угол С = 180 - (58+66) = 56
угол C меньше чем углы А и B.
Так как напротив меньшего угла лежит меньшая сторона, то АB будет меньшей стороной
2. Напротив большего угла большая сторона, значит напротив большей стороны - больший угол.
АС больше чем АВ и АD, напротив АС угол В
3. Тупым углом считается угол, больше чем 90 градусов. В равнобедренном треугольнике углы при основании равны, значит, если мы возьмём за тупой угол угол при основании, то получим что в треугольнике будет два тупых угла, и их сумма будет превышать 180, что невозможно по теореме о сумме углов треугольника. Значит, тупым углом будет угол при вершине. Так как угол при вершине тупой, два оставшихся угла при основании - острые и равны. Острый угол при меньше, чем тупой при вершине, а значит сторона, лежащая напротив угла при вершине, будет являться большей. Сторона, лежащая напротив угла при вершине в равнобедренном треугольнике является основанием, значит основание будет больше, чем боковые стороны.
4. Так как напротив гипотенузы лежит прямой угол в 90°, то по теореме о сумме углов треугольника, сумма двух других углов = 90°, а значит два других угла в любом случае будут меньше чем прямой угол => угол в 90° - самый больший, а значит и гипотенуза, лежащая напротив него, будет больше катетов.
5. Так как гипотенуза всегда больше, чем катет, то КМ будет являться гипотенузой.
Проверим через теорему Пифагора
4²+3² = 5²
16 + 9 = 25
25 = 25, √25 = 5 => 5=5
6. Треугольник равнобедренный, значит у него две равные стороны и основание. Возьмём за основание 16 см, значит, боковая сторона 8 см. По свойству равнобедренного треугольника вторая боковая сторона тоже будет 8 см. Проверим по теореме о сумме сторон(сумма двух сторон не должна быть больше оставшейся стороны)
8+8=16 чм, вторая сторона тоже 16 см, значит, длина третьей стороны - 8 см
Возьмём за боковую сторону 16 см, тогда основание будет 8 см. Точно так же по свойству равнобедренного треугольника получим, что вторая боковая сторона будет 16 см. Проверим по теореме о сумме сторон:
16+16 = 32 см, 32 см > 8 см => такого треугольника не существует.