Периметр треугольника АВС равен 42 см. На сторонах АС и ВС треугольника взяты соответственно точки D и F, AD=FB и DC=CF. Из точек D и Fна сторону АВ опущены перпендикуляры DE и FM. Известно, что АС = 15см, МВ=3.
1)Чему равен отрезок АВ?
2)чему равен отрезок ЕМ
3)выберите верное утверждение:
1.уголЕDA=углуМFB
2.CF=AE
3.ED=2FM
4. УголBFM=углуACB
AC и BD-диоганали и пересекаются точке О
AB=6 см
∠А=60°
S=?
Решение:
∠B=180-60=120 так как углы прилежащи к одной стороне ромба =180
∠ABD=∠DBC=120:2=60 так как диоганали ромба являются биссектрисами
AB=AD=6см так как все стороны ромба равны
AB=AD,∠ABD=∠BAD=60°⇒ΔABD-равносторонний Δ⇒BD диоганаль=6 см
BO=OD=6:2=3 см так как диоганали ромба пересекаются и точкой пересечение делит их пополам
AO=CO
По Теореме Пифагора:
AO²=6²-3²
AO=√36-9=√25=5
AC=5*2=10 см
S ромба=d1*d2:2=10*6:2=30 см²
ответ:S ромба=30 см²
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.