Плоский угол при вершине правильной треугольной пирамиды равен 90°. Найти отношение боковой поверхности этой пирамиды к площади ее основания.
Площадь правильного треугольника - а основание правильной пирамиды - правильный треугольник S=(a²√3):4 Площадь боковой поверхности - это площадь трех граней пирамиды. Каждая грань - равнобедренный треугольник с основанием а, равным стороне правильного треугольника в основании пирамиды, и высотой h=апофеме. S=ah:2 Чтобы найти площадь боковой поверхности, нужно найти апофему. Угол АSC- прямой. Треугольник ASC - прямоугольный равнобедренный.
Апофема грани пирамиды - высота и медиана этого треугольника. Медиана прямоугольного треугольника равна половине гипотенузы.
Высота SM равна половине АС и равна а:2 Площадь треугольника АSС=(а*а:2):2=а²:4 Площадь боковой поверхности равна 3а²:4 Отношение боковой поверхности этой пирамиды к площади ее основания Sбок:S ᐃ АВС=(3а²:4):{(a²√3):4}=√3
Косинус угла- отношение катета, прилежащего к углу, к гипотенузе.
Нужный угол равен линейному углу двугранного угла между данными плоскостями. Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.
Сделаем и рассмотрим рисунок, соответствующий условию задачи. КН - расстояние от т.К до плоскости ромба. ВЕ - высота ромба. cos ∠КМН - искомый.
ВЕ⊥АD=АВ•sin30°=8•1/2=4 см.
КН⊥ВС, НМ⊥АD, НМ=ВЕ=4 см ( расстояние между параллельными прямыми равно в любой точке)
По т. о 3-х перпендикулярах КМ⊥АD. Т.к. ∆ АКD правильный, его углы равны 60°.⇒ КМ=АК•sin60°=4√3 или по т.Пифагора из ∆ КНМ получим тот же результат. ⇒ cos∠KMH=МН/КМ=4/4√3=1/√3 или иначе √3/3
Плоский угол при вершине правильной треугольной пирамиды равен 90°.
Найти отношение боковой поверхности этой пирамиды к площади ее основания.
Площадь правильного треугольника - а основание правильной пирамиды - правильный треугольник
S=(a²√3):4
Площадь боковой поверхности - это площадь трех граней пирамиды.
Каждая грань - равнобедренный треугольник с основанием а, равным стороне правильного треугольника в основании пирамиды, и высотой h=апофеме.
S=ah:2
Чтобы найти площадь боковой поверхности, нужно найти апофему.
Угол АSC- прямой.
Треугольник ASC - прямоугольный равнобедренный.
Апофема грани пирамиды - высота и медиана этого треугольника.
Медиана прямоугольного треугольника равна половине гипотенузы.
Высота SM равна половине АС и равна а:2
Площадь треугольника АSС=(а*а:2):2=а²:4
Площадь боковой поверхности равна 3а²:4
Отношение боковой поверхности этой пирамиды к площади ее основания
Sбок:S ᐃ АВС=(3а²:4):{(a²√3):4}=√3
ответ:√3/3
* * *
Косинус угла- отношение катета, прилежащего к углу, к гипотенузе.
Нужный угол равен линейному углу двугранного угла между данными плоскостями. Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.
Сделаем и рассмотрим рисунок, соответствующий условию задачи. КН - расстояние от т.К до плоскости ромба. ВЕ - высота ромба. cos ∠КМН - искомый.
ВЕ⊥АD=АВ•sin30°=8•1/2=4 см.
КН⊥ВС, НМ⊥АD, НМ=ВЕ=4 см ( расстояние между параллельными прямыми равно в любой точке)
По т. о 3-х перпендикулярах КМ⊥АD. Т.к. ∆ АКD правильный, его углы равны 60°.⇒ КМ=АК•sin60°=4√3 или по т.Пифагора из ∆ КНМ получим тот же результат. ⇒ cos∠KMH=МН/КМ=4/4√3=1/√3 или иначе √3/3