Периметр треугольника равен 48 см. найдите его стороны, если они относятся как 1 : 2.
б) биссектрисса угла а прямоугольника авсd делит сторону вс на части 2 см и 6 см. найдите периметр треугольника.
в) найдите меньший из углов между диагоналями прямоугольника, если его меньшая сторона относится к диагонали как 1 : 2.
Відповідь:Дано:
треугольник DEF,
угол D = 90, угол F = 30,
ЕР - биссектриса,
ЕР + РD = 12 см.
Найти длину FP - ?
1 ) Рассмотрим треугольник DEF.
угол Е = 180 - (угол D + угол F);
угол Е = 180 - (90 + угол 30);
угол Е = 180 - 120;
угол Е = 60;
2) Так как ЕР - биссектриса, то угол DЕР = РЕF = 60 : 2 = 30;
3) Рассматриваем прямоугольный треугольник DЕР. Напротив угла в 30 градусов лежит катет, который равен половине гипотенузы, то есть DР = 1/2 * ЕР;
2) Так как ЕР + РD = 12 см, то
ЕР + 1/2 ЕР = 12;
Ер * (1 + 1/2) = 12;
ЕР * 1 1/2 = 12;
ЕР = 12 : 1 1/2;
ЕР = 12 : 3/2;
ЕР = 12 * 2/3;
ЕР = (12 * 2)/3;
ЕР = (4 * 2)/1;
ЕР = 8 см.
ответ: 8 сантиметров.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.