Пусть дана прямоугольная трапеция ABCD. у которой ВС и AD - основания, угол А =углу В=90 градусов. О- центр вписанной в трапецию окружности, точка М - точка касания окружности стороны AD и точка К - точка касания окружности стороны ВС. АМ=20 см, MD=25 см, тогда ОМ=ОК=r=20см и АВ=40 см. DM=DK=25 см как отрезки касательных,проведенных из одной точки. Угол С+ угол D трапеции=180 градусов, как внутренние накрест лежащие углы, DO и CO - биссектрисы соответствующих углов, то угол CDO+DCO=90градусов, следовательно угол COD=90 градусов, т.е. треугольник COD - прямоугольный, у которого ОК - высота, проведенная к гипотенузе, OK^2=DK*CK, CK=400/25=16 см. Значит периметр трапеции равен 20+25+25+16+16+20+40=162 см
Обозначим каждую часть диагонали х Вся диагональ 3х Имеем равнобедренный треугольник у которого основание равно 2х. Боковые стороны а. высота такого треугольника равна √а²-х² Площадь треугольника, образованного диагональю и двумя сторонами прямоугольника равна 1/2 ·3х ·√а²-х²
С драгой стороны вторая сторона прямоугольника по теореме Пифагора равна√(3х)²-а² Площадь треугольника образованного диагональю и двум сторонами равна половине произведения сторон
1/2 · а ·√9х²-а²
ПРиравняем и решим уравнение 9х^4=a^4 3x²=a² x=a√3/3 диагональ равна а·√3 вторая сторона по теореме ПИфагора а√2
ответ: Р=162 см
Объяснение:
Пусть дана прямоугольная трапеция ABCD. у которой ВС и AD - основания, угол А =углу В=90 градусов. О- центр вписанной в трапецию окружности, точка М - точка касания окружности стороны AD и точка К - точка касания окружности стороны ВС. АМ=20 см, MD=25 см, тогда ОМ=ОК=r=20см и АВ=40 см. DM=DK=25 см как отрезки касательных,проведенных из одной точки. Угол С+ угол D трапеции=180 градусов, как внутренние накрест лежащие углы, DO и CO - биссектрисы соответствующих углов, то угол CDO+DCO=90градусов, следовательно угол COD=90 градусов, т.е. треугольник COD - прямоугольный, у которого ОК - высота, проведенная к гипотенузе, OK^2=DK*CK, CK=400/25=16 см. Значит периметр трапеции равен 20+25+25+16+16+20+40=162 см
Вся диагональ 3х
Имеем равнобедренный треугольник у которого основание равно 2х. Боковые стороны а. высота такого треугольника равна √а²-х²
Площадь треугольника, образованного диагональю и двумя сторонами прямоугольника равна
1/2 ·3х ·√а²-х²
С драгой стороны вторая сторона прямоугольника по теореме Пифагора
равна√(3х)²-а²
Площадь треугольника образованного диагональю и двум сторонами равна половине произведения сторон
1/2 · а ·√9х²-а²
ПРиравняем и решим уравнение
9х^4=a^4
3x²=a²
x=a√3/3
диагональ равна а·√3
вторая сторона по теореме ПИфагора а√2