Перпендикуляр к стороне АС в треугольнике ABC пересекает его сторону AB в точке M, а продолжение стороны BC в точке K. известно что AB больше BC. Докажите что BK больше BM.
Рассмотрим прямоугольный треугольник АВС. Пусть длина катета АС = 12 * х сантиметров, а длина катета ВС = 5 * х сантиметров. Тогда по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
Начерти 5 равных квадратов подряд, у тебя получится меньшая сторона= 1 часть, большая сторона равна 5 частям периметр-это сумма всех сторон складывай части сторон 1+1+5+5=12 частей периметр 3720 : 12=310 см это меньшая сторона 310 х 5 =1550 см большая сторона находи площадь 31 х 1550=480500 см кв 2) находи периметр первого 160+160+360+360=1040 м это длина первого и второго участков площадь первого будет 160 х 360=57600 м кв квадратный будет иметь сторону (160+360): 2=260 м площадь квадратного 260х260=67600 м кв удачи!
205: Дано:
прямоугольный треугольник АВС,
угол С = 90 градусов,
АС : ВС = 12 : 5,
АВ = 39 сантиметров.
Найти катеты АС, ВС — ?
Рассмотрим прямоугольный треугольник АВС. Пусть длина катета АС = 12 * х сантиметров, а длина катета ВС = 5 * х сантиметров. Тогда по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АС^2 + ВС^2 = АВ^2:
(12х)^2 + (5х)^2 = 39^2;
144х^2 + 25 х^2 =1 521;
169х^2 = 1 521;
х^2 = 1 521 : 169;
х^2 = 9;
х = 3;
12 * 3 = 36 сантиметров — длина катета АС;
5 * 3 = 15 сантиметров — длина катета ВС.
ответ: 36 сантиметров; 15 сантиметров.
206: пусть х - первый катет, а y - второй:
y^2-17y+60=0
D=289-240=
y1=12
y2=5
найдем x:
x=17-y
x-17-12 x=17-5
х = 5 x=12
ответ: (5;12), (12;5)
Подробнее - на -